I give here an alternative way to find the Pauli matrices, which seems natural to me. Any U(2) matrix can be parameterized by :
<br />
M_{U(2)} = \left(<br />
\begin{array}{cc}<br />
e^{\imath u}\cos(\theta) & e^{\imath v}\sin(\theta)\\<br />
-e^{\imath w}\sin(\theta) & e^{\imath (w+v-u)}\cos(\theta)<br />
\end{array}<br />
\right)<br />
and this reduces in the subgroup SU(2) to w+v=0 or :
<br />
M_{SU(2)} = \left(<br />
\begin{array}{cc}<br />
e^{\imath u}\cos(\theta) & e^{\imath v}\sin(\theta)\\<br />
-e^{-\imath v}\sin(\theta) & e^{-\imath u}\cos(\theta)<br />
\end{array}<br />
\right)<br />
Now as usual to find the generators, one differentiate with respect to each parameters, and takes the values near the identity :
<br />
\frac{\partial M}{\partial\theta} = \left(<br />
\begin{array}{cc}<br />
-e^{\imath u}\sin(\theta) & e^{\imath v}\cos(\theta)\\<br />
-e^{-\imath v}\cos(\theta) & -e^{-\imath u}\sin(\theta)<br />
\end{array}<br />
\right)_{\theta=0,u=0,v=0}<br />
=<br />
\left(<br />
\begin{array}{cc}<br />
0 & 1\\<br />
-1& 0<br />
\end{array}<br />
\right)<br />
<br />
\frac{\partial M}{\partial u} = \left(<br />
\begin{array}{cc}<br />
\imath e^{\imath u}\cos(\theta) & 0\\<br />
0 & -\imath e^{-\imath u}\cos(\theta)<br />
\end{array}<br />
\right)_{\theta=0,u=0,v=0}<br />
=<br />
\left(<br />
\begin{array}{cc}<br />
\imath & 0\\<br />
0& -\imath<br />
\end{array}<br />
\right)<br />
<br />
\frac{\partial M}{\partial w} = \left(<br />
\begin{array}{cc}<br />
0 & \imath e^{\imath v}\sin(\theta)\\<br />
\imath e^{-\imath v}\sin(\theta) & 0<br />
\end{array}<br />
\right)_{\theta=0,u=0,v=0}<br />
=<br />
\left(<br />
\begin{array}{cc}<br />
0 & 1\\<br />
1& 0<br />
\end{array}<br />
\right)<br />
But these are not the Pauli matrices, they differ by a factor -\imath. This is exactly what is done : the Pauli matrices define an arbitrary SU(2) matrix by :
<br />
M_{SU(2)} =e^{\imath \vec{L}\cdot\vec{\sigma}\alpha/2}=\sigma_0\cos(\frac{\alpha}{2})<br />
-\imath \vec{L}\cdot\vec{\sigma}\sin(\frac{\alpha}{2})<br /> with \sigma_0 the identity, \vec{L} a unitary vector directing the rotation axis, and \alpha the rotation angle. By differentiating this near the identity, one recovers the correct -\imath factor w.r.t. the previously calculated matrices.