MHB Finding revolution/minute of a wheel traveling in a speed of 15 miles/hour

  • Thread starter Thread starter bsmithysmith
  • Start date Start date
  • Tags Tags
    Speed Wheel
bsmithysmith
Messages
23
Reaction score
0
A truck with 32- inch- diameter wheels is traveling in a speed of 15 miles/hour. Find the angular speed of the wheels in radians/minute. How many revolutions per minute does the wheel make?

My teacher mentions that we are trying to find the angular speed in this. Another question is how do I distinguish using angular or linear speed/formula for this equation? I know that angular speed = theta/time and linear speed = arclength/time, but when he explained the question, he made up a newer looking equation: v = (2pi(r)w)/theta. I don't understand this at all and how to get the answer.
 
Mathematics news on Phys.org
Let's begin with the equation for linear distance, speed and time:

$$d=vt$$

When the truck's wheel moves through an angle $\theta$, then the truck will move a linear distance equal to:

$$d=r\theta$$

This comes from the arc-length of a circular sector.

And so we have:

$$r\theta=vt$$

Now, the angular velocity $\omega$ is defined as the change of the angle $\theta$ with respect to time, and for constant speeds, this is:

$$\omega\equiv\frac{\theta}{t}$$

Now, recall we have:

$$r\theta=vt$$

Dividing through by $t$, we obtain:

$$v=r\frac{\theta}{t}=r\omega$$

or:

$$\omega=\frac{v}{r}$$

You are given $v$ and $r$ and so you can find $\omega$ from this formula, but be mindful of your units, because $v$ is given in miles per hour, but you want time in minutes. Can you proceed?
 
Sorry it took awhile to reply but yes! That really helped a lot! Thank you so much for that! I asked my friend who's taking a physics class and he mentioned that the linear speed formula is similar to something he learned, except it's not:

$$v=(radius(theta))/time$$

but

$$v=distance/radius$$

I'm still very edgy and somewhat having trouble with trigonometry, my teacher's back is always blocking what he's doing.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Back
Top