Finding Spin Expectation Values At Any Time t > 0

AI Thread Summary
The discussion focuses on finding the spin state of a spin-1/2 particle at any time t > 0, given an initial spinor and a magnetic field in the z-direction. The initial spin state is expressed as a linear combination of the z-basis spinors, leading to coefficients a_u and a_d. The participant derives the time-dependent spinor using energy eigenvalues and the gyromagnetic ratio. However, there is a noted mistake in the calculation of the expectation value of S_x, which affects the final result. The method used is confirmed to be applicable for calculating spinors in any direction n, enhancing understanding of the topic.
Leechie
Messages
19
Reaction score
2

Homework Statement


Write down a spinor that represents the spin state of the particle at any time t > 0. Use the expression to find the expectation values of ##S_x## and ##S_y##

Homework Equations


The particle is a spin-##\frac 1 2## particle, the gyromagnetic ratio is ##\gamma_s \lt 0##, and the magnetic field points in the ##z## direction.

The initial spin state is: ##| A \rangle_{initial}=\frac 1 5 \begin{bmatrix}3\\4\end{bmatrix}##

The Attempt at a Solution


This is where I've got so far:
$$| A \rangle_{initial}=\frac 1 5 \begin{bmatrix}3\\4\end{bmatrix}=a_u|\uparrow_n \rangle+a_d|\downarrow_n \rangle$$
Finding ##|\uparrow_n \rangle## and ##|\downarrow_n \rangle## using ##|\uparrow_n \rangle=\begin{bmatrix}\cos(\theta / 2)\\e^{i\phi}\sin(\theta / 2)\end{bmatrix}## and ##|\downarrow_n \rangle=\begin{bmatrix}-e^{-i\phi}\sin(\theta / 2)\\\cos(\theta / 2)\end{bmatrix}##. The magnetic field points in the ##z## direction so ##\theta = 0## and ##\phi = 0##:
$$|\uparrow_z \rangle=\begin{bmatrix}\cos(0)\\e^0\sin(0)\end{bmatrix}=\begin{bmatrix}1\\0\end{bmatrix} \\ |\downarrow_z \rangle=\begin{bmatrix}-e^0\sin(0)\\\cos(0)\end{bmatrix}=\begin{bmatrix}0\\1\end{bmatrix}$$
Finding the coeffecients ##a_u## and ##a_d##:
$$a_u=\langle \uparrow_z | A \rangle=\frac 1 5 \begin{bmatrix}1&0\end{bmatrix} \begin{bmatrix}3\\4\end{bmatrix}=\frac 3 5 \\ a_d=\langle \downarrow_z | A \rangle=\frac 1 5 \begin{bmatrix}0&1\end{bmatrix} \begin{bmatrix}3\\4\end{bmatrix}=\frac 4 5$$
So:
$$| A \rangle_{initial}=\frac 1 5 \begin{bmatrix}3\\4\end{bmatrix}=\frac 3 5 \begin{bmatrix}1\\0\end{bmatrix} + \frac 4 5 \begin{bmatrix}0\\1\end{bmatrix}$$
Using the the equation for spin at any time ##| A \rangle=a_u e^{-iE_ut/\hbar}|\uparrow_n\rangle + a_d e^{-iE_dt/\hbar}|\downarrow_n\rangle## and since ##\gamma_s \lt 0## the energy eigenvalues are ##E_u=+\frac {\hbar \omega} 2## and ##E_d=-\frac {\hbar \omega} 2## I get:
$$| A \rangle=\frac 3 5 e^{-i\omega t/2}\begin{bmatrix}1\\0\end{bmatrix} + \frac 4 5 e^{+i\omega t/2}\begin{bmatrix}0\\1\end{bmatrix}$$
And so the spinor I get to is:
$$| A \rangle=\frac 1 5\begin{bmatrix}3 e^{-i\omega t/2}\\4 e^{+i\omega t/2}\end{bmatrix}$$
For the expectation value of ##S_x## I get:
$$\begin{align} \langle S_x \rangle & =\langle A | \hat {\mathrm S}_x | A \rangle \nonumber \\ & =\frac 1 5 \begin{bmatrix}3 e^{+i\omega t/2} & 4 e^{-i\omega t/2}\end{bmatrix} \frac \hbar 2 \begin{bmatrix}0&1\\1&0\end{bmatrix} \frac 1 5 \begin{bmatrix}3 e^{-i\omega t/2} \\ 4 e^{+i\omega t/2}\end{bmatrix} \nonumber \\ & = \frac 1 5 \begin{bmatrix}3 e^{+i\omega t/2} & 4 e^{-i\omega t/2}\end{bmatrix} \frac \hbar {10} \begin{bmatrix}4 e^{+i\omega t/2} \\ 3 e^{-i\omega t/2} \end{bmatrix} \nonumber \\ & = \frac \hbar {50} \left( 12e^{i\omega t} + 12e^{i\omega t} \right) \nonumber \\ & = \frac {12\hbar} {25} e^{iwt} \nonumber \end{align}$$
Could someone tell me if I'm along the right lines with this. I've been working on this for so long now I'm starting to lose sight of how this should workout.
Thanks
 
Physics news on Phys.org
Leechie said:
$$\begin{align} \langle S_x \rangle & =\langle A | \hat {\mathrm S}_x | A \rangle \nonumber \\ & =\frac 1 5 \begin{bmatrix}3 e^{+i\omega t/2} & 4 e^{-i\omega t/2}\end{bmatrix} \frac \hbar 2 \begin{bmatrix}0&1\\1&0\end{bmatrix} \frac 1 5 \begin{bmatrix}3 e^{-i\omega t/2} \\ 4 e^{+i\omega t/2}\end{bmatrix} \nonumber \\ & = \frac 1 5 \begin{bmatrix}3 e^{+i\omega t/2} & 4 e^{-i\omega t/2}\end{bmatrix} \frac \hbar {10} \begin{bmatrix}4 e^{+i\omega t/2} \\ 3 e^{-i\omega t/2} \end{bmatrix} \nonumber \\ & = \frac \hbar {50} \left( 12e^{i\omega t} + 12e^{i\omega t} \right) \nonumber \\ & = \frac {12\hbar} {25} e^{iwt} \nonumber \end{align}$$
You made a mistake going from line 4 to line 5 line 3 to 4 in there, so the final result is not correct. Otherwise, it looks fine.
 
Last edited:
  • Like
Likes Leechie
Leechie said:
Finding ##|\uparrow_n \rangle## and ##|\downarrow_n \rangle## using ##|\uparrow_n \rangle=\begin{bmatrix}\cos(\theta / 2)\\e^{i\phi}\sin(\theta / 2)\end{bmatrix}## and ##|\downarrow_n \rangle=\begin{bmatrix}-e^{-i\phi}\sin(\theta / 2)\\\cos(\theta / 2)\end{bmatrix}##. The magnetic field points in the ##z## direction so ##\theta = 0## and ##\phi = 0##:
$$|\uparrow_z \rangle=\begin{bmatrix}\cos(0)\\e^0\sin(0)\end{bmatrix}=\begin{bmatrix}1\\0\end{bmatrix} \\ |\downarrow_z \rangle=\begin{bmatrix}-e^0\sin(0)\\\cos(0)\end{bmatrix}=\begin{bmatrix}0\\1\end{bmatrix}$$

Just an observation. The formulas you are using are valid for the "z-basis" where ##\begin{bmatrix}1\\0\end{bmatrix}## is the z-spin-up and ##\begin{bmatrix}0\\1\end{bmatrix}## is the z-spin-down. So, ##a_u = \frac35## and ##a_d = \frac45## immediately.

In other words, by definition:$$| A \rangle_{initial}=\frac 1 5 \begin{bmatrix}3\\4\end{bmatrix}=\frac35 |\uparrow_z \rangle + \frac45 |\downarrow_z \rangle$$
 
  • Like
Likes Leechie
I had a feeling there was something wrong somewhere, I'll take another look. Thanks for your help.
 
PeroK said:
Just an observation. The formulas you are using are valid for the "z-basis" where ##\begin{bmatrix}1\\0\end{bmatrix}## is the z-spin-up and ##\begin{bmatrix}0\\1\end{bmatrix}## is the z-spin-down. So, ##a_u = \frac35## and ##a_d = \frac45## immediately.

In other words, by definition:$$| A \rangle_{initial}=\frac 1 5 \begin{bmatrix}3\\4\end{bmatrix}=\frac35 |\uparrow_z \rangle + \frac45 |\downarrow_z \rangle$$

Thanks PeroK. When I was working through that I realized it just led back to the initial spin state because of the z-basis. Is the method I used a general way of calculating a spinor in any direction ##n##?
 
Leechie said:
Thanks PeroK. When I was working through that I realized it just led back to the initial spin state because of the z-basis. Is the method I used a general way of calculating a spinor in any direction ##n##?

Yes, the formulas you used would give you (expressed in the z-basis) the eigenspinors in the direction ##n##.
 
  • Like
Likes Leechie
PeroK said:
Yes, the formulas you used would give you (expressed in the z-basis) the eigenspinors in the direction ##n##.

Thanks. I think I'm finally starting to get my head round this now.
 
  • Like
Likes PeroK
Back
Top