 #1
 88
 2
Homework Statement
Is the following matrix a state operator ? and if it is a state operator is it a pure state ? and if it is so then find the state vectors for the pure state.
If you dont see image here is the matrix which is 2X2 in matlab code:
[9/25 12/25; 12/25 16/25]
Homework Equations
To be a state operator, if we have a operator ρ we know :
Tr(ρ)=1
ρ=ρ^{t} (selfadjoint)
<uρu> >= 0 for all vectors u>
and these means :
the sum of eigenvalues must be 1 and eigenvalues must be greater or equal to zero
For pure state what do I know are these:
ρ=ψ><ψ where ψ> is the unitnormed vector called state vector.
The average value of an observable R in this pure state is:
<R> = Tr(ψ><ψR) = <ψRψ>
The other condition is :
ρ^{2}=ρ (which is possible for 1 or 0 but the sum of eigenvalues must be 1)
The third condition is :
Tr(ρ^{2})=1
The Attempt at a Solution
This matrix has eigenvalues 1 and 0. And this means it is a state operator. In my solution I do see that this matrix is a pure state and it has the vector state : (3/5 4/5). But I dont know how I can use conditions for pure state to see that if a matrix or an operator is a pure state and I can not either get the state vectors.
What do I know is that :
WWith eigenvalue 1 we get vector ((4/3) 1). I do see that (3/5 4/5) is the norm of the diagonal of the matrix, [9/25 12/25; 12/25 16/25], that is in the first place in the matrix we have 9/25 and √(9/25)= 3/5.
In the last place of this matrix we have 16/25 and √(16/25) = 4/5
ofcourse 16/25 + 9/25 =1
But is that correct to think so ?
Attachments

954 bytes Views: 445