Finding temperature change, thermodynamics first law

AI Thread Summary
The discussion centers on calculating temperature changes using the ideal gas law (PV=nRT) and the first law of thermodynamics. The initial and final pressures were calculated as 62639 and 96629, respectively, leading to initial and final temperatures of 81.79 and 167.747. However, the calculated temperature change of 85.957 does not match the expected answer of 122.74. Participants suggest re-evaluating the pressure calculations and question the inclusion of a 1.5 factor in the temperature formula. Accurate calculations and clear problem statements are emphasized for resolving discrepancies.
JoeyBob
Messages
256
Reaction score
29
Homework Statement
see attached
Relevant Equations
PV=nRT
So I calculated the final and initial pressures using the given eqns, ended up with the final pressure of 96629 and initial pressure of 62639.

Then I used the PV=nRT eqn to calculate the final and initial temperatures. T=P*V/(n*1.5*R).

I got an initial temperature of 81.79 and a final temperature of 167.747, which is a change in temperature of 85.957 but the answer is 122.74.
 
Physics news on Phys.org
JoeyBob said:
Homework Statement:: see attached
Relevant Equations:: PV=nRT

So I calculated the final and initial pressures using the given eqns, ended up with the final pressure of 96629 and initial pressure of 62639.

Then I used the PV=nRT eqn to calculate the final and initial temperatures. T=P*V/(n*1.5*R).

I got an initial temperature of 81.79 and a final temperature of 167.747, which is a change in temperature of 85.957 but the answer is 122.74.
So, is there a problem statement somewhere involved here?
 
Also, attaching units to your numbers would be helpful.
 
Chestermiller said:
So, is there a problem statement somewhere involved here?

My bad. its attached to this reply
 

Attachments

  • question.PNG
    question.PNG
    13.8 KB · Views: 164
Your pressures are way off. Please redo the calculation.
 
I don't confirm either of the pressures you calculated. Also, what is that 1.5 factor doing in the denominator of your ideal gas temperature calculation?
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Correct statement about a reservoir with an outlet pipe'
The answer to this question is statements (ii) and (iv) are correct. (i) This is FALSE because the speed of water in the tap is greater than speed at the water surface (ii) I don't even understand this statement. What does the "seal" part have to do with water flowing out? Won't the water still flow out through the tap until the tank is empty whether the reservoir is sealed or not? (iii) In my opinion, this statement would be correct. Increasing the gravitational potential energy of the...
Thread 'A bead-mass oscillatory system problem'
I can't figure out how to find the velocity of the particle at 37 degrees. Basically the bead moves with velocity towards right let's call it v1. The particle moves with some velocity v2. In frame of the bead, the particle is performing circular motion. So v of particle wrt bead would be perpendicular to the string. But how would I find the velocity of particle in ground frame? I tried using vectors to figure it out and the angle is coming out to be extremely long. One equation is by work...
Back
Top