Finding temperature change, thermodynamics first law

AI Thread Summary
The discussion centers on calculating temperature changes using the ideal gas law (PV=nRT) and the first law of thermodynamics. The initial and final pressures were calculated as 62639 and 96629, respectively, leading to initial and final temperatures of 81.79 and 167.747. However, the calculated temperature change of 85.957 does not match the expected answer of 122.74. Participants suggest re-evaluating the pressure calculations and question the inclusion of a 1.5 factor in the temperature formula. Accurate calculations and clear problem statements are emphasized for resolving discrepancies.
JoeyBob
Messages
256
Reaction score
29
Homework Statement
see attached
Relevant Equations
PV=nRT
So I calculated the final and initial pressures using the given eqns, ended up with the final pressure of 96629 and initial pressure of 62639.

Then I used the PV=nRT eqn to calculate the final and initial temperatures. T=P*V/(n*1.5*R).

I got an initial temperature of 81.79 and a final temperature of 167.747, which is a change in temperature of 85.957 but the answer is 122.74.
 
Physics news on Phys.org
JoeyBob said:
Homework Statement:: see attached
Relevant Equations:: PV=nRT

So I calculated the final and initial pressures using the given eqns, ended up with the final pressure of 96629 and initial pressure of 62639.

Then I used the PV=nRT eqn to calculate the final and initial temperatures. T=P*V/(n*1.5*R).

I got an initial temperature of 81.79 and a final temperature of 167.747, which is a change in temperature of 85.957 but the answer is 122.74.
So, is there a problem statement somewhere involved here?
 
Also, attaching units to your numbers would be helpful.
 
Chestermiller said:
So, is there a problem statement somewhere involved here?

My bad. its attached to this reply
 

Attachments

  • question.PNG
    question.PNG
    13.8 KB · Views: 163
Your pressures are way off. Please redo the calculation.
 
I don't confirm either of the pressures you calculated. Also, what is that 1.5 factor doing in the denominator of your ideal gas temperature calculation?
 
Thread 'Minimum mass of a block'
Here we know that if block B is going to move up or just be at the verge of moving up ##Mg \sin \theta ## will act downwards and maximum static friction will act downwards ## \mu Mg \cos \theta ## Now what im confused by is how will we know " how quickly" block B reaches its maximum static friction value without any numbers, the suggested solution says that when block A is at its maximum extension, then block B will start to move up but with a certain set of values couldn't block A reach...
TL;DR Summary: Find Electric field due to charges between 2 parallel infinite planes using Gauss law at any point Here's the diagram. We have a uniform p (rho) density of charges between 2 infinite planes in the cartesian coordinates system. I used a cube of thickness a that spans from z=-a/2 to z=a/2 as a Gaussian surface, each side of the cube has area A. I know that the field depends only on z since there is translational invariance in x and y directions because the planes are...
Thread 'Calculation of Tensile Forces in Piston-Type Water-Lifting Devices at Elevated Locations'
Figure 1 Overall Structure Diagram Figure 2: Top view of the piston when it is cylindrical A circular opening is created at a height of 5 meters above the water surface. Inside this opening is a sleeve-type piston with a cross-sectional area of 1 square meter. The piston is pulled to the right at a constant speed. The pulling force is(Figure 2): F = ρshg = 1000 × 1 × 5 × 10 = 50,000 N. Figure 3: Modifying the structure to incorporate a fixed internal piston When I modify the piston...
Back
Top