Finding Tension in String Connected to Electrically Repelled Sphere

AI Thread Summary
The discussion centers on calculating the tension in the string supporting a second charged sphere in static equilibrium. Given the angles of the spheres and the tension in one string, the participant recognizes the need to analyze force components in both the x and y directions. They establish equations for each sphere, noting that the horizontal tension components are equal due to electric repulsion. However, the lack of mass data complicates finding the y component of the tension in the second string. The participant seeks clarification on whether the assumption of equal heights for the spheres is valid, which would simplify the calculations.
velouria131
Messages
13
Reaction score
0

Homework Statement



Two uniformly charged spheres are suspended by strings of length L from vertically adjustable supports. The spheres are in static equilibrium.

The angles with respect to the vertical are Q=14.9°, and T=20.7°.

The tension in the string supporting sphere Z (Z with respect to angle T, W is the other sphere and hangs with respect to angle Q) is 2.41E-5 N. Calculate the tension in the other string.

Homework Equations



Fe = k (q1 * q2 / (r) ^ 2)

Fg = mg

The Attempt at a Solution



Alright, here is a brief overview of what I have done. I first recognized that the system was in static equilibrium. Thus, for each sphere I wrote equations representing the force components, and set each equation to zero. Each sphere operates under the same conditions.

Sphere Z lies to the left (T is force due to tension, Fe is force due to Electric repulsion)

Tx = Tcos∅
Ty = Tsin∅
T = 2.41E-5 N

0 = Tx - Fe
0 = Ty - mg

Sphere W lies to the right:

Tx = Tcostheta
Ty = Tsintheta

0 = -Tx + Fe
0 = Ty - mg

So, I recognize that in each case, the x-component of the tension in each string is equivalent. This makes sense because the forces on each sphere with respect to the x-axis are due to the electric force. This force has an equal and opposite effect. I cannot figure out how to find the total tension in the second string, even though I know the x component etc. Any help in progressing from this point would be greatly appreciated.
 
Physics news on Phys.org
The question states that the spheres are on vertically adjustable supports. Are we allowed to assume that the spheres are at the same height, because this would simplify the question to equating horizontal tension components.
 
apelling said:
The question states that the spheres are on vertically adjustable supports. Are we allowed to assume that the spheres are at the same height, because this would simplify the question to equating horizontal tension components.

Yes, absolutely. There is a diagram I can include if that is needed. The horizontal components are equivalent. However, the masses are not given, so I haven't a clue how to find the y component of the tension in the second string.
 
But you have its x component Tx and an angle ∅ and Tx=Tcos∅
 
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Thread 'A cylinder connected to a hanged mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top