Finding the area of a triangle on a graph

Count Duckula
Messages
8
Reaction score
0
Here is the question: http://i259.photobucket.com/albums/hh299/the-real-guitar-hero/Capture_zpsf2b9cd28.png

part A = 3√5
b=y=2X+1
c=(0,1)
D is where I am confused. Area of triangle = (base x height)/2
from working out, line 2 cuts the x-axis at -1/2. line 1 cuts the x at 7. the height is 3. thus the area should be [(7.5*3)/2] = 11.25 . but the mark scheme says the answer is 7.5? which is length of the base! but the heck?This is just one of those small things that has confused the hell out of me >.<
 
Mathematics news on Phys.org
The base of the triangle is PR, which does not have length 7 because P is not on the x-axis!
Similarly, the height of the triangle is PQ.
 
Ugh. ok, so its, 3√5 * √5
 
Almost :)

Count Duckula said:
Area of triangle = (base x height)/2
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top