Finding the Equation of a Plane in R3 Using Intersection Points and Distances

  • Thread starter Thread starter xzardaz
  • Start date Start date
  • Tags Tags
    Camera
xzardaz
Messages
10
Reaction score
0
Hello, I have a simple(or not?) math problem:

I have equations of 3 lines in R3 trought the origin:

line l1:
1*x+β1*y+γ1*z=0
2*x+β2*y+γ2*z=0

line l2:
3*x+β2*y+γ3*z=0
4*x+β3*y+γ4*z=0

line l3:
5*x+β4*y+γ5*z=0
6*x+β5*y+γ6*z=0

I know every λ, β and γ - they are real constants.

I also have a plane δ and :

l1 intersects δ in point p1,
l2 intersects δ in point p2,
l3 intersects δ in point p3

I also know:
...the distance between p1 and p2 = h
...the distance between p2 and p3 = w
...p1, p2 and p3 form a right triangle with right angle at p2 (h2+w2=(p1p3)2)

I want to find the equation of δ in terms of λ, β, γ, h and w

_______________________________

it should be easy to find the equation of the plane if I find the points p1, p2 and p3

I think I should compose a system, containing:
...the first six equations(which are linear, so it should be easy to solve with matrices),
...the equation for right angle in R3: w2+h2=(p1p2)2,
...the two equations for distances w and h: h2=(p1x-p2x)2+(p1y-p2y)2+(p1z-p2z)2 and w2=(p2x-p3x)2+(p2y-p3y)2+(p2z-p3z)2

There are 9 equations with 9 unknowns (3 points, each with 3 coordinates) - it should be solvable.

Have you got any ideas how to solve this? If there weren't 3 quadratic equations it would be easy.


*I know that there should be 2 planes, matching the conditions - one that I've drawn(see the image) and the other is at the opposite side of the origin. I think the two roots of the quadratic equations should find them.
 

Attachments

  • 222222.jpg
    222222.jpg
    13.7 KB · Views: 415
Physics news on Phys.org
Hey xzardaz.

Try using the intersections to get the normal of the plane and use one of the points as a point on the plane.

Basically a line is represented by L(t) = a*(1-t) + (b-a)*t where the line passes through points a and b.

Now if you solve for t for all the lines you build a normal by considering n = (p2-p1) X (p3-p1) which you normalize and then use the relationship n . (r - r0) = 0 where n is what you solved, r0 = p1, and r is a general point on the plane.
 
Try using the intersections to get the normal of the plane and use one of the points as a point on the plane.

Basically a line is represented by L(t) = a*(1-t) + (b-a)*t where the line passes through points a and b.

Now if you solve for t for all the lines you build a normal by considering n = (p2-p1) X (p3-p1) which you normalize and then use the relationship n . (r - r0) = 0 where n is what you solved, r0 = p1, and r is a general point on the plane.

I don't think I fully understand you. Can you give me some references ?

If I solve L(t) = a*(1-t) + (b-a)*t for all the lines, I can't get the points, because there are infinite number of points matching the equations. How do I use w and h ?
 
You can solve for t by using the fact that L(t) = point on plane for some t and then re-arrange to get the value of t.
 
Happy new year,

L(t)=a(1-t)+(b-a)t\\

L(t)=p1x(1-t)+(p2x-p1x)t
L(t)=p1y(1-t)+(p2y-p1y)t
L(t)=p1z(1-t)+(p2z-p1z)t

L(t)=p2x(1-t)+(p3x-p2x)t
L(t)=p2y(1-t)+(p3y-p2y)t
L(t)=p2z(1-t)+(p3z-p2z)t

Is that what you mean ? If so, how do I find p1, p2 and p3 ?
 
Last edited:
What you have is basically L_1(t) = p1 = a1*(1-t1) + (b1-a1)*t1, L_2 = a2*(1-t2) + (b2-a2)*t2 and so on.

You extrapolate your variables in terms of the t's by relating the different forms of the line equations together.

The normal is calculated in terms of (p3-p1) X (p2-p1) and this will give the normal to the plane with point p1 on the plane.
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...

Similar threads

Back
Top