It's extremely difficult to read that image. I did manage to get some idea of what you did.
I wrote essentially what you have for the potential, V, but I write it as the potential at point (x, y, z) and use z' as the integration variable.
Here's the your integral for the potential with the above (minor) modifications in variable names:
## \displaystyle V(x,\,y,\,z) = \frac{\lambda } { 4\pi \varepsilon_0} \int_{-L}^L \frac{ dz' } { \, \sqrt{ x^2 + y^2 + (z' -z)^2 } \,} ##
After following the next few steps I see a problem.
You use a form of the anti-derivative which is in terms of a logarithm. Nothing wrong with that. But if we call that anti-derivative, ##\ \ln(F(z')) \,,\ ## then plugging in the limits of integration gives ##\ \ln(F(L))-\ln(F(-L)) \ \ \rightarrow \ \ \ln \left( \frac{F(L)} {F(-L)} \right)##.
The problem is that then you pick the seemingly convenient choice of solving ## \ F(L) = F(-L) \ since that will make the argument of the logarithm be a constant, namely 1 . The problem with that is this would make the integral equal to zero. That's not possible. The integrand is greater than zero for all values of z' .
As for the answer of being a "prolate ellipsoid", I suppose they mean a prolate spheroid I'm somewhat skeptical of that. Perhaps the equi-potential surfaces approach this shape at a distance sufficiently far from the line charge.