parabol
- 17
- 0
Homework Statement
By using cos and sin subs for tan and sec, find the gradient of:
ln(tan2x+secx)
Homework Equations
tanx=sinx/cosx
secx=1/cosx
The Attempt at a Solution
Substituting
y=ln(\frac{sin2x}{cos2x}+\frac{1}{cosx})
Using the chain rule let:
z= \frac{sin2x}{cos2x}+\frac{1}{cosx}
y=lnz
\frac{dy}{dz}=\frac{1}{z}=z^{-1}=(\frac{sin2x}{cos2x}+\frac{1}{cosx})^{-1}=\frac{cos2x}{sin2x}+cosx
looking at z use the quotient rulee for the first part sin2x/cos2x let:
u=sin2x \frac{du}{dx}=2cos2x
v=cos2x \frac{dv}{dx}=-2sin2x
\frac{dz}{dx}=\frac{v\frac{du}{dx}-u\frac{dv}{dx}}{v^2}
=\frac{(cos2x)(2cos2x)-(sin2x)(-2sin2x)}{(cos^22x)}
=\frac{(2cos^22x)+(2sin^22x)}{(cos^22x)}
=\frac{2(cos^22x)+(sin^22x)}{(cos^22x)}
As sin^2x+cos^2x=1 therefore:
=\frac{2}{(cos^22x)}
Going back to the now partionally differentated value of z
y=\frac{1}{cosx}=cos^{-1}x
if y=cos^{-1}x then x=cosx
so \frac{dx}{dy}=-siny so \frac{dy}{dx}=\frac{-1}{sin y}
since - cos^2y+sin^2y=1 then sin^2y=1-cos^2y=1-x^2
meaning siny=\sqrt{1-x^2} and \frac{d}{dx}{cos^{-1}}=\frac{-1}{\sqrt{1-x^2}}
That menas that\frac{dz}{dx}=\frac{2}{(cos^22x)}-\frac{1}{\sqrt{1-x^2}}
Back to the fist chain rule:
\frac{dy}{dx}=\frac{dy}{dz}.\frac{dz}{dx}=(\frac{cos2x}{sin2x}+cosx).(\frac{2}{(cos^22x)}-\frac{1}{\sqrt{1-x^2}})
Sorry for the mass workings but I've been struggling with this and have now had a brain failure and can't see if I am right or even how to simplify the final differential.
Is what I have done correct?