Finding the Limit of x^2-1/|x-1| at x=1

  • Thread starter Thread starter n.a.s.h
  • Start date Start date
  • Tags Tags
    Limit
n.a.s.h
Messages
18
Reaction score
0

Homework Statement



Finding a limit? x^2-1/| x-1|?

when x approaches 1 from the right

and when x approaches 1 from the left


Homework Equations





The Attempt at a Solution



for the right i got 2 and left i got -2 but I am not sure...
 
Physics news on Phys.org
That's right. I'd feel a little more confident that you understood it if you'd explain why.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top