Finding the mclauren series forthe following function

  • Thread starter Thread starter Dell
  • Start date Start date
  • Tags Tags
    Function Series
Dell
Messages
555
Reaction score
0
f(x)=xe-2x

fx=xe-2x
f'x=e-2x-2xe-2x
f''x=-2e-2x-2(e-2x-2xe-2x)=-4e-2x+4xe-2x
f'''x=8e-2x+4(e-2x-2xe-2x)=12e-2x-8xe-2x
fivx=-24e-2x-8(e-2x-2xe-2x)=-32e-2x+16xe-2x
fvx=64e-2x+16(e-2x-2xe-2x)

f(0)=0
f'(0)=1
f''(0)=-4
f'''(0)=12
fiv(0)=-32
fv(0)=80

fx=0+x/(1!)-4x2/(2!)+12x3/(3!)-12x4/(4!)+80x5/(5!)...
=0+x-2x2+2x3-4x4/3+2x5/3...


i need to express this series as a progression but cannot find the regularity of it, can anyone see anything or help me to see it??
 
Physics news on Phys.org
0= 0(2^{-1})
1= 1(2^0)
4= 2(2^1)
12= 3(2^2)
32= 4(2^3)
80= 5(2^4)

Does that help?
 
helps a lot, thanks, how did you see that?
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top