MHB Finding the Position Vector of Point $B$ on a Line Segment Between $P$ and $Q$

AI Thread Summary
To find the position vector of point B on the line segment between points P and Q, where P = (1,2,-1) and Q = (3,1,0), it is established that the distance from P to B is twice the distance from Q to B. Using the parameterization of the line segment, the distances are calculated as d(P,B) = √6 t₀ and d(Q,B) = √6 (1-t₀). Setting the equation √6 t₀ = 2√6 (1-t₀) leads to the solution t₀ = 2/3. Consequently, the position vector of B is determined to be (7/3, 4/3, -1/3).
Guest2
Messages
192
Reaction score
0
Let $P = (1,2,-1)$ and $Q = (3,1,0)$. A point $B$ lies on the line segment between $P$ and $Q$. Given that its distance from $P$ is twice its distance from $Q$. Find the position vector of $B$.
 
Mathematics news on Phys.org
The equation for a line segment is very similar to that for a line, it is:

$(x,y,z) = tQ + (1-t)P,\ 0 \leq t \leq 1$ (this one goes FROM $P$ TO $Q$, as $t$ goes from 0 to 1, if we switch $P$ and $Q$ it goes the other way).

In our case, this is $(2t+1,2-t,t-1)$ with $0 \leq t \leq 1$.

Suppose we choose $0 < t_0 < 1$. Let's use the standard distance formula, to calculate the distance of the point $B$ corresponding to $t_0$.

We have $d(P,B) = \sqrt{(1-(2t_0+1))^2 + (2-(2-t_0))^2 + (-1-(t_0-1))^2}$

$= \sqrt{4t_0^2 + t_0^2 + t_0^2} = \sqrt{6}t_0$

and $d(Q,B) = \sqrt{(3-(2t_0+1))^2 + (1-(2-t_0))^2 + (0-(t_0 - 1))^2}$

$= \sqrt{(2-2t_0)^2 + (-1+t_0)^2 + (t_0-1)^2} = \sqrt{6}(1-t_0)$ (we use $1-t_0$ since we want the positive square root).

Can you continue?

(Intuitively, how far along the interval from 0 to 1 do you have to be, to where how far you have to go is half of how far you've come? Use this to check your answer).
 
Deveno said:
The equation for a line segment is very similar to that for a line, it is:

$(x,y,z) = tQ + (1-t)P,\ 0 \leq t \leq 1$ (this one goes FROM $P$ TO $Q$, as $t$ goes from 0 to 1, if we switch $P$ and $Q$ it goes the other way).

In our case, this is $(2t+1,2-t,t-1)$ with $0 \leq t \leq 1$.

Suppose we choose $0 < t_0 < 1$. Let's use the standard distance formula, to calculate the distance of the point $B$ corresponding to $t_0$.

We have $d(P,B) = \sqrt{(1-(2t_0+1))^2 + (2-(2-t_0))^2 + (-1-(t_0-1))^2}$

$= \sqrt{4t_0^2 + t_0^2 + t_0^2} = \sqrt{6}t_0$

and $d(Q,B) = \sqrt{(3-(2t_0+1))^2 + (1-(2-t_0))^2 + (0-(t_0 - 1))^2}$

$= \sqrt{(2-2t_0)^2 + (-1+t_0)^2 + (t_0-1)^2} = \sqrt{6}(1-t_0)$ (we use $1-t_0$ since we want the positive square root).

Can you continue?

(Intuitively, how far along the interval from 0 to 1 do you have to be, to where how far you have to go is half of how far you've come? Use this to check your answer).

Thank you!

Since it's distance from $P$ is twice its distance from $Q$, it's

$\sqrt{6}t_0 = 2 \sqrt{6}(1-t_0) \implies t_0 = \frac{2}{3}$, so $\vec{B} = \left(\frac{7}{3}, \frac{4}{3}, -\frac{1}{3}\right)$
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...

Similar threads

Replies
3
Views
1K
Replies
1
Views
1K
Replies
1
Views
2K
Replies
5
Views
3K
Replies
2
Views
2K
Back
Top