MHB Finding the Position Vector of Point $B$ on a Line Segment Between $P$ and $Q$

Guest2
Messages
192
Reaction score
0
Let $P = (1,2,-1)$ and $Q = (3,1,0)$. A point $B$ lies on the line segment between $P$ and $Q$. Given that its distance from $P$ is twice its distance from $Q$. Find the position vector of $B$.
 
Mathematics news on Phys.org
The equation for a line segment is very similar to that for a line, it is:

$(x,y,z) = tQ + (1-t)P,\ 0 \leq t \leq 1$ (this one goes FROM $P$ TO $Q$, as $t$ goes from 0 to 1, if we switch $P$ and $Q$ it goes the other way).

In our case, this is $(2t+1,2-t,t-1)$ with $0 \leq t \leq 1$.

Suppose we choose $0 < t_0 < 1$. Let's use the standard distance formula, to calculate the distance of the point $B$ corresponding to $t_0$.

We have $d(P,B) = \sqrt{(1-(2t_0+1))^2 + (2-(2-t_0))^2 + (-1-(t_0-1))^2}$

$= \sqrt{4t_0^2 + t_0^2 + t_0^2} = \sqrt{6}t_0$

and $d(Q,B) = \sqrt{(3-(2t_0+1))^2 + (1-(2-t_0))^2 + (0-(t_0 - 1))^2}$

$= \sqrt{(2-2t_0)^2 + (-1+t_0)^2 + (t_0-1)^2} = \sqrt{6}(1-t_0)$ (we use $1-t_0$ since we want the positive square root).

Can you continue?

(Intuitively, how far along the interval from 0 to 1 do you have to be, to where how far you have to go is half of how far you've come? Use this to check your answer).
 
Deveno said:
The equation for a line segment is very similar to that for a line, it is:

$(x,y,z) = tQ + (1-t)P,\ 0 \leq t \leq 1$ (this one goes FROM $P$ TO $Q$, as $t$ goes from 0 to 1, if we switch $P$ and $Q$ it goes the other way).

In our case, this is $(2t+1,2-t,t-1)$ with $0 \leq t \leq 1$.

Suppose we choose $0 < t_0 < 1$. Let's use the standard distance formula, to calculate the distance of the point $B$ corresponding to $t_0$.

We have $d(P,B) = \sqrt{(1-(2t_0+1))^2 + (2-(2-t_0))^2 + (-1-(t_0-1))^2}$

$= \sqrt{4t_0^2 + t_0^2 + t_0^2} = \sqrt{6}t_0$

and $d(Q,B) = \sqrt{(3-(2t_0+1))^2 + (1-(2-t_0))^2 + (0-(t_0 - 1))^2}$

$= \sqrt{(2-2t_0)^2 + (-1+t_0)^2 + (t_0-1)^2} = \sqrt{6}(1-t_0)$ (we use $1-t_0$ since we want the positive square root).

Can you continue?

(Intuitively, how far along the interval from 0 to 1 do you have to be, to where how far you have to go is half of how far you've come? Use this to check your answer).

Thank you!

Since it's distance from $P$ is twice its distance from $Q$, it's

$\sqrt{6}t_0 = 2 \sqrt{6}(1-t_0) \implies t_0 = \frac{2}{3}$, so $\vec{B} = \left(\frac{7}{3}, \frac{4}{3}, -\frac{1}{3}\right)$
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Replies
3
Views
1K
Replies
1
Views
1K
Replies
1
Views
2K
Replies
5
Views
3K
Replies
2
Views
2K
Back
Top