Finding the Position Vector of Point $B$ on a Line Segment Between $P$ and $Q$

Click For Summary
SUMMARY

The position vector of point B on the line segment between points P and Q, where P = (1,2,-1) and Q = (3,1,0), is determined by the condition that the distance from P to B is twice the distance from Q to B. By applying the distance formula and solving the equation $\sqrt{6}t_0 = 2\sqrt{6}(1-t_0)$, we find that $t_0 = \frac{2}{3}$. Consequently, the position vector of B is $\vec{B} = \left(\frac{7}{3}, \frac{4}{3}, -\frac{1}{3}\right)$.

PREREQUISITES
  • Understanding of vector notation and position vectors
  • Familiarity with the distance formula in three-dimensional space
  • Knowledge of parameterization of line segments
  • Basic algebraic manipulation skills
NEXT STEPS
  • Study the concept of vector parameterization in geometry
  • Learn more about distance calculations in three-dimensional space
  • Explore applications of line segments in physics and engineering
  • Investigate the implications of ratios in geometric positioning
USEFUL FOR

Students in geometry, mathematicians, and anyone involved in physics or engineering who requires a solid understanding of vector mathematics and spatial relationships.

Guest2
Messages
192
Reaction score
0
Let $P = (1,2,-1)$ and $Q = (3,1,0)$. A point $B$ lies on the line segment between $P$ and $Q$. Given that its distance from $P$ is twice its distance from $Q$. Find the position vector of $B$.
 
Physics news on Phys.org
The equation for a line segment is very similar to that for a line, it is:

$(x,y,z) = tQ + (1-t)P,\ 0 \leq t \leq 1$ (this one goes FROM $P$ TO $Q$, as $t$ goes from 0 to 1, if we switch $P$ and $Q$ it goes the other way).

In our case, this is $(2t+1,2-t,t-1)$ with $0 \leq t \leq 1$.

Suppose we choose $0 < t_0 < 1$. Let's use the standard distance formula, to calculate the distance of the point $B$ corresponding to $t_0$.

We have $d(P,B) = \sqrt{(1-(2t_0+1))^2 + (2-(2-t_0))^2 + (-1-(t_0-1))^2}$

$= \sqrt{4t_0^2 + t_0^2 + t_0^2} = \sqrt{6}t_0$

and $d(Q,B) = \sqrt{(3-(2t_0+1))^2 + (1-(2-t_0))^2 + (0-(t_0 - 1))^2}$

$= \sqrt{(2-2t_0)^2 + (-1+t_0)^2 + (t_0-1)^2} = \sqrt{6}(1-t_0)$ (we use $1-t_0$ since we want the positive square root).

Can you continue?

(Intuitively, how far along the interval from 0 to 1 do you have to be, to where how far you have to go is half of how far you've come? Use this to check your answer).
 
Deveno said:
The equation for a line segment is very similar to that for a line, it is:

$(x,y,z) = tQ + (1-t)P,\ 0 \leq t \leq 1$ (this one goes FROM $P$ TO $Q$, as $t$ goes from 0 to 1, if we switch $P$ and $Q$ it goes the other way).

In our case, this is $(2t+1,2-t,t-1)$ with $0 \leq t \leq 1$.

Suppose we choose $0 < t_0 < 1$. Let's use the standard distance formula, to calculate the distance of the point $B$ corresponding to $t_0$.

We have $d(P,B) = \sqrt{(1-(2t_0+1))^2 + (2-(2-t_0))^2 + (-1-(t_0-1))^2}$

$= \sqrt{4t_0^2 + t_0^2 + t_0^2} = \sqrt{6}t_0$

and $d(Q,B) = \sqrt{(3-(2t_0+1))^2 + (1-(2-t_0))^2 + (0-(t_0 - 1))^2}$

$= \sqrt{(2-2t_0)^2 + (-1+t_0)^2 + (t_0-1)^2} = \sqrt{6}(1-t_0)$ (we use $1-t_0$ since we want the positive square root).

Can you continue?

(Intuitively, how far along the interval from 0 to 1 do you have to be, to where how far you have to go is half of how far you've come? Use this to check your answer).

Thank you!

Since it's distance from $P$ is twice its distance from $Q$, it's

$\sqrt{6}t_0 = 2 \sqrt{6}(1-t_0) \implies t_0 = \frac{2}{3}$, so $\vec{B} = \left(\frac{7}{3}, \frac{4}{3}, -\frac{1}{3}\right)$
 

Similar threads

  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
4
Views
1K
Replies
1
Views
1K
Replies
17
Views
3K
Replies
3
Views
3K
  • · Replies 11 ·
Replies
11
Views
4K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K