Finding the Probability Density Function for the Sum of Two Random Variables

jmckennon
Messages
39
Reaction score
0
Hi,

I've been working on this problem but I feel like I'm over complicating it. If you have a random variable X= a*e(j*phi), where phi is uniform on the interval [0,2pi) and a is some constant, and another random variable Y= b where b is a constant. I'm looking to find the probability density function of the random variable Z=X+Y.

This is probably really simple but from what I've been trying to do, I can just take the Fourier transform of X, Fourier transform of Y multiply them, and then take the inverse Fourier of that, but it doesn't seem to work. How can I do this?
 
Physics news on Phys.org
You haven't defined j. If I can assume you mean i (sqrt(-1)), then X (complex variable) is uniformly distributed on a circle of radius a, centered at 0. Z is then uniformly distributed on a circle of radius a centered at b.
 
yes, i apologize, j is sqrt(-1). After defining in MATLAB phi=rand(1,M).*2*pi where M=1000, i plotted Z= b+a.*exp(j.*phi) for various values of a and b and it looked kinda like an upside gaussian distribution centered about pi. Is this right?
 
*upside down gaussian distribution
 
I'm confused about what you did, since Z is complex, not real.
 
Namaste & G'day Postulate: A strongly-knit team wins on average over a less knit one Fundamentals: - Two teams face off with 4 players each - A polo team consists of players that each have assigned to them a measure of their ability (called a "Handicap" - 10 is highest, -2 lowest) I attempted to measure close-knitness of a team in terms of standard deviation (SD) of handicaps of the players. Failure: It turns out that, more often than, a team with a higher SD wins. In my language, that...
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Back
Top