Finding the Product of Primes: A Number Theory Puzzle

evansmiley
Messages
15
Reaction score
0
Hi i found a question in number theory, involving two equations, it goes as follows:
Let p1, p2, p3 and p4 be 4 different prime numbers satisfying the equations
2p1 + 3p2 + 5p3 + 7p4 = 162
11p1 + 7p2 + 5p3 + 4p4 = 162
Find all possible values of p1p2p3p4.

Not knowing what to do, i used the fact that even plus odd numbers add to give odd numbers to deduce that one of either p2 or p3 is 2. Also, by taking the two equations from each other, and some inequalities i managed to break down p1 and p4 into sets of possible prime numbers (p1 was possibly 3,5,7 or 11, and p4 was either 13, 17 or 10) and i was forced into testing each value of p4 and seeing if other solutions are possible, however there was only one possible answer which was p1 = 5, p2 = 3, p3 = 2, and p4 = 19, which gives the product value of 570.
Two questions - is this actually right ? and secondly, surely there's a much nicer way to find the answer to this question, maybe one which is more indirect seeing as we must only find the possible values of the product, not the values of the prime numbers themselves?
EDIT: Sorry just saw that rule about no posting of any "homework-style" questions, sorry.
 
Last edited:
Physics news on Phys.org
Yes, you are right. My way was to first subtract the equations, immediately giving p2=3. Then p3=2 as you say, and we are left with 2 linear eqs in 2 unknowns, giving us 5 and 19. I don't think there is a natural way of only getting the product, without getting the primes.
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...

Similar threads

Replies
1
Views
2K
Replies
3
Views
2K
Replies
6
Views
7K
Replies
1
Views
3K
Replies
7
Views
3K
Replies
8
Views
4K
Replies
2
Views
1K
Replies
1
Views
2K
Back
Top