Finding the Range & Domain of y = 24 - 2x

  • Thread starter Thread starter okunyg
  • Start date Start date
  • Tags Tags
    Domain Range
okunyg
Messages
17
Reaction score
0
I'm sorry for this, but what is the range and domain of the following function?

y = 24 - 2x

y has to be positive (y > 0) and x too (x > 0)

How would you solve this? Do you just need a look and then be able to write it down? Or do you need to solve it with algebra?

I've found that x can only be up to 12, or else y would be negative:

y = 24 - 2x
0 = 24 - 2x
x = 12

What is then the minimum of x?

2x = 24 - y
0 = 24 - y
y = 24

When y is 24, x is zero.

This means:
0 < x < 12

With these values, y is always positive, we have solved the domain of the function.

Is this correct?
 
Last edited:
Mathematics news on Phys.org
okunyg said:
This means:
0 < x < 12

With these values, y is always positive, we have solved the domain of the function.

Is this correct?
That's right.
 
y > 0 implies 24 - 2x > 0 implies x < 12

x > 0 implies 12 - 0.5y > 0 implies y < 24

So: 0 < x < 12

And: 0 < y < 24

Good work. Also, don't apologise for wanting help.
 
Thanks.


But apparently the correct answer is:

6 < x < 12 and
0 < y < 12

Is the key (answer) in the back of the book misprinted perhaps?
 
okunyg said:
Thanks.


But apparently the correct answer is:

6 < x < 12 and
0 < y < 12

Is the key (answer) in the back of the book misprinted perhaps?

yes completely wrong
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top