- #1

Diesel17

- 6

- 0

I posted this in the ME section as well but thought this would be a good section as well. I am working on a thesis project and have a question for anyone who feels they can answer it. I am trying to find the resistive force created when a magnet moves along a coil of wire. I have put pictures below but here is the short explanation:

The pendulum, which is fixed at a point along the rod (D2 is about 2*D1 but that isn't important in this step) oscillates according to a driving frequency f . On top of the pivot is a magnet with the center drilled out. This magnet oscillates back and forth according to the pendulum's motion while moving over a system of coils. What I want to find is an equation for how much resistance is created as an emf is induced. I am having a hard time though because when I think about it conceptually I find the magnetic field to be in the same direction as the motion which would yield zero current. This isn't the case though so I am looking for some help setting this up.

For now I would like to leave the factors such as number of turns, field strength, etc as variables so that I can play with them and find which values will yield the best induced emf without completely ruining the motion as the driving frequency is fixed. Any ideas are greatly appreciated! I'm also new so if this is in the wrong section please just let me know!

View attachment 81577