TheMan112
- 42
- 1
I'm trying to find the coordinates where the determinant of the Kerr metric goes towards infinity. This should give the ring singularity of a Kerr (rotating) black hole. So, I'm starting out with the standard form Kerr metric in Boyer-Lindquist coordinates:
ds^2=\frac{\Delta}{\rho^2}(dt-a sin^2 \theta d\phi)^2-\frac{sin^2\theta}{\rho^2}((r^2+a^2)d\phi-a dt)^2-\frac{\rho^2}{\Delta}dr^2-\rho^2d\phi
Then I break out the terms dt^2, dr^2, d\theta^2, d\phi^2 and dt d\phi, this gives the metric:
g_{ab} = \left(\begin{array}{cccc} \frac{\Delta-a^2 sin^2\theta}{\rho^2} & 0 & 0 & \frac{2a sin^2\theta (r^2+a^2-\Delta)}{\rho^2} \\ 0 & -\frac{\rho^2}{\Delta} & 0 & 0 \\ 0 & 0 & \rho^2 & 0 \\ \frac{2a sin^2\theta (r^2+a^2-\Delta)}{\rho^2} & 0 & 0 & \frac{sin^2 \theta (\Delta a^2 -(r^2 + a^2)^2)}{\rho^2} \end{array} \right)
Calculating the determinant of this matrix in Maple gives the expression:
det(g_{ab})={\frac{1}{\delta}}\left(- \left( \sin \left( \theta \right) \left( \Delta\,{a}^{2}-{r<br /> }^{4}-2\,{r}^{2}{a}^{2}-{a}^{4} \right) \right) ^{2}\Delta+ \left( <br /> \sin \left( \theta \right) \left( \Delta\,{a}^{2}-{r}^{4}-2\,{r}^{2}{<br /> a}^{2}-{a}^{4} \right) \right) ^{2}{a}^{2} \left( \sin \left( \theta<br /> \right) \right) ^{2}+4\,{a}^{2} \left( \sin \left( \theta \right) <br /> \right) ^{4}{r}^{4}+8\,{a}^{4} \left( \sin \left( \theta \right) <br /> \right) ^{4}{r}^{2}
-8\,{a}^{2} \left( \sin \left( \theta \right) <br /> \right) ^{4}{r}^{2}\Delta+4\,{a}^{6} \left( \sin \left( \theta<br /> \right) \right) ^{4}-8\,{a}^{4} \left( \sin \left( \theta \right) <br /> \right) ^{4}\Delta+4\,{a}^{2} \left( \sin \left( \theta \right) <br /> \right) ^{4}{\Delta}^{2})
Are my calculations correct? And how can I find the coordinates where it goes towards infinity in an analytical way? I'm not even sure how to plot the determinant on a computer given I'm not entirely used to Boyer-Lindquist coordinates.
Edit: Pardon the "bad" thread title, I pushed the submit button rather prematurely.
ds^2=\frac{\Delta}{\rho^2}(dt-a sin^2 \theta d\phi)^2-\frac{sin^2\theta}{\rho^2}((r^2+a^2)d\phi-a dt)^2-\frac{\rho^2}{\Delta}dr^2-\rho^2d\phi
Then I break out the terms dt^2, dr^2, d\theta^2, d\phi^2 and dt d\phi, this gives the metric:
g_{ab} = \left(\begin{array}{cccc} \frac{\Delta-a^2 sin^2\theta}{\rho^2} & 0 & 0 & \frac{2a sin^2\theta (r^2+a^2-\Delta)}{\rho^2} \\ 0 & -\frac{\rho^2}{\Delta} & 0 & 0 \\ 0 & 0 & \rho^2 & 0 \\ \frac{2a sin^2\theta (r^2+a^2-\Delta)}{\rho^2} & 0 & 0 & \frac{sin^2 \theta (\Delta a^2 -(r^2 + a^2)^2)}{\rho^2} \end{array} \right)
Calculating the determinant of this matrix in Maple gives the expression:
det(g_{ab})={\frac{1}{\delta}}\left(- \left( \sin \left( \theta \right) \left( \Delta\,{a}^{2}-{r<br /> }^{4}-2\,{r}^{2}{a}^{2}-{a}^{4} \right) \right) ^{2}\Delta+ \left( <br /> \sin \left( \theta \right) \left( \Delta\,{a}^{2}-{r}^{4}-2\,{r}^{2}{<br /> a}^{2}-{a}^{4} \right) \right) ^{2}{a}^{2} \left( \sin \left( \theta<br /> \right) \right) ^{2}+4\,{a}^{2} \left( \sin \left( \theta \right) <br /> \right) ^{4}{r}^{4}+8\,{a}^{4} \left( \sin \left( \theta \right) <br /> \right) ^{4}{r}^{2}
-8\,{a}^{2} \left( \sin \left( \theta \right) <br /> \right) ^{4}{r}^{2}\Delta+4\,{a}^{6} \left( \sin \left( \theta<br /> \right) \right) ^{4}-8\,{a}^{4} \left( \sin \left( \theta \right) <br /> \right) ^{4}\Delta+4\,{a}^{2} \left( \sin \left( \theta \right) <br /> \right) ^{4}{\Delta}^{2})
Are my calculations correct? And how can I find the coordinates where it goes towards infinity in an analytical way? I'm not even sure how to plot the determinant on a computer given I'm not entirely used to Boyer-Lindquist coordinates.
Edit: Pardon the "bad" thread title, I pushed the submit button rather prematurely.
Last edited: