Finding the set of u such that

  • Thread starter Thread starter 1question
  • Start date Start date
  • Tags Tags
    Set
AI Thread Summary
To solve the inequality u(u-1) > 0, it is essential to recognize that the product is positive when both factors are either positive or negative. This leads to two cases: u > 1 (where both factors are positive) and u < 0 (where both factors are negative). The correct solution is expressed as the union of intervals (-∞, 0) U (1, ∞), indicating that u can be less than 0 or greater than 1. Understanding the distinction between "and" and "or" is crucial, as the solution cannot satisfy both conditions simultaneously. The discussion highlights the importance of analyzing the signs of the factors involved in the inequality.
1question
Messages
66
Reaction score
0
Hi. I'm having trouble understanding the logic behind finding a set of u for u(u-1) > 0. To solve these, I tend to factor as much as possible, then equate each expression to 0 (in this case to > 0) and solve, changing the > to < if I must divide by a negative number. I get u >0 and u > 1 but the solution is given as (-∞,0)U(1,∞), aka u>1 and u<0. Why does it say u<0?
Any help would be appreciated.

SOLVED. See below replies + http://tutorial.math.lamar.edu/Classes/Alg/SolvePolyInequalities.aspx
 
Last edited:
Mathematics news on Phys.org
1question said:
Hi. I'm having trouble understanding the logic behind finding a set of u for u(u-1) > 0. To solve these, I tend to factor as much as possible, then equate each expression to 0 (in this case to > 0) and solve, changing the > to < if I must divide by a negative number.
This is not the correct approach. If u(u - 1) > 0 then either
1) u > 0 AND u - 1 > 0. This leads to u > 0 AND u > 1, which simplifies to u > 1
OR
2) u < 0 AND u - 1 < 0. This leads to u < 0 AND u < 1, which simplifies to u < 0
1question said:
I get u >0 and u > 1 but the solution is given as (-∞,0)U(1,∞), aka u>1 and u<0.
No, (-∞, 0) U (1, ∞) does not mean u > 1 and u < 0, which no number can satisfy. There is no number that is simultaneously greater than 1 and negative.

(-∞, 0) U (1, ∞) means u < 0 or u > 1. The difference between "and" and "or" here is very significant.
1question said:
Why does it say u<0?
See above
 
Last edited:
1question said:
Hi Mark. OK, I generally understand the idea, except for why you would do 2) in the first place. The sign is > not <, so why did you do both? Thanks.
Because if a*b > 0, either both numbers have to be positive or both have to be negative. For example (-2)(-4) = + 8.
1question said:
EDIT: I believe I understand the process now.
http://tutorial.math.lamar.edu/Classes/Alg/SolvePolyInequalities.aspx is very helpful.
 
Alright, so what you have here Is fun.
in fact when you open the parentheses you will get: u2 - u > 0.

Now to know when that happends you can simply solve what it should look like.
since the u^2 has a positive feature you can infer it will be a "smiling" parabule.
and you can clearly see the u(u-1) You can easly infere that the whole equation will equel zero at u=0 or u=-1

look at wolf ram alpha and see the discription fits.

After this you need to look at where the Y axis (the actual u(u-1)) is larger then 0.
You will find it does at numbers higher then 1 or lower then 0.

You're approax is deviding it into 2 separate the inequalities and I believe this way is easier and quicker.

Tell me if I am unclear.
 
@ Spring. I figured it out already thanks to the link posted above. I appreciate the reply though!
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top