I Analyzing the Convergence of a Geometric Series

  • I
  • Thread starter Thread starter Mr Davis 97
  • Start date Start date
  • Tags Tags
    Series Sum
AI Thread Summary
The series under discussion, ∑(n=0 to ∞) 1/(2^(n+1)(n+1)), converges to log(2), as confirmed by WolframAlpha. To analyze this series analytically, participants suggest using the power series expansion of log(1+x) and substituting x with -1/2. Differentiating the series and integrating known series representations helps in deriving the constant of integration, which is essential for confirming the convergence result. The discussion emphasizes understanding the relationship between the series and its logarithmic representation, ultimately leading to clarity on the convergence behavior. The exploration of these mathematical methods enhances comprehension of series convergence involving logarithmic functions.
Mr Davis 97
Messages
1,461
Reaction score
44
I have the following series that I came up with in doing a problem: ##\displaystyle \sum_{n=0}^{\infty} \frac{1}{2^{n+1}(n+1)}##. I looked at WolframAlpha and it says that this series converges to ##\log (2)##. Is it possible to figure this out analytically?
 
Mathematics news on Phys.org
Mr Davis 97 said:
I have the following series that I came up with in doing a problem: ##\displaystyle \sum_{n=0}^{\infty} \frac{1}{2^{n+1}(n+1)}##. I looked at WolframAlpha and it says that this series converges to ##\log (2)##. Is it possible to figure this out analytically?
As the result involves the logarithm, we first have to find a way to express the logarithm by a series. Which one do you chose? If you define the logarithm otherwise, there will probably a bit more work to do.
 
fresh_42 said:
As the result involves the logarithm, we first have to find a way to express the logarithm by a series. Which one do you chose? If you define the logarithm otherwise, there will probably a bit more work to do.
Well, suppose that I had no idea that the answer turned out to be ##\log 2##. Would there be any way for me to proceed?
 
Pattern recognition and a slightly more general problem:

use ## p \in (0,1)## instead of ##\frac{1}{2}##

what happens if you differentiate the series?
 
Mr Davis 97 said:
Well, suppose that I had no idea that the answer turned out to be ##\log 2##. Would there be any way for me to proceed?
The easiest way is to consider ##\log(1+x)=-\sum_{k=0}^{\infty}\dfrac{(-x)^{k+1}}{k+1}## which is the power series expansion at ##x=0## for ##-1< x \le 1\,.## Then simply take ##x=-\frac{1}{2}\,.## But I think it's fun (and a good exercise) to consider the other proposed ways above, esp. what @StoneTemplePython suggested: differentiate ##f(p)=\sum_{k=0}^{\infty}\dfrac{p^{k+1}}{k+1}##.
 
Last edited:
  • Like
Likes mfb
StoneTemplePython said:
Pattern recognition and a slightly more general problem:

use ## p \in (0,1)## instead of ##\frac{1}{2}##

what happens if you differentiate the series?
That's neat... So if I let ##S## be the desired sum, I found that ##S(p) = \log p + C##. How would I find the constant of integration? I don't know of any initial conditions where ##0 < p < 1##.
 
Mr Davis 97 said:
That's neat... So if I let ##S## be the desired sum, I found that ##S(p) = \log p + C##. How would I find the constant of integration? I don't know of any initial conditions where ##0 < p < 1##.

actually you do know the initial conditions are

##
\displaystyle \sum_{n=0}^{\infty} \frac{p^{n+1}}{(n+1)}
##

so when you have

##\frac{1}{1-p} = 1 + p + p^2 + p^3 + ... ##

you then integrate both sides... ignoring the constant of integration for a moment, does the term by term integration of the Right hand side match with your original series? If so, the Left hand side does too -- this allows you to "zero in" on the constant of integration.

- - - -
edit: another simpler thing to notice is that every term in your original series has a ##p## there are no constants...

another edit: changed the original series to make sure the ##p## is in the numerator!
 
Last edited:
Mr Davis 97 said:
That's neat... So if I let ##S## be the desired sum, I found that ##S(p) = \log p + C##. How would I find the constant of integration? I don't know of any initial conditions where ##0 < p < 1##.
What is ##\sum q^k## for ##0<q<1\,##?
 
StoneTemplePython said:
actually you do know the initial conditions are

##
\displaystyle \sum_{n=0}^{\infty} \frac{1}{p^{n+1}(n+1)}
##

so when you have

##\frac{1}{1-p} = 1 + p + p^2 + p^3 + ... ##

you then integrate both sides... ignoring the constant of integration for a moment, does the term by term integration of the Right hand side match with your original series? If so, the Left hand side does too -- this allows you to "zero in" on the constant of integration.

- - - -
edit: another simpler thing to notice is that every term in your original series has a ##p## there are no constants...
So are you saying that the constant of integration is 0?
 
  • #10
Mr Davis 97 said:
So are you saying that the constant of integration is 0?

You tell me. When you applied the derivative operator to your original series, did any term get mapped to zero? That is the information loss associated with basic differentiation. So what kind of information was lost here?
 
  • #11
StoneTemplePython said:
You tell me. When you applied the derivative operator to your original series, did any term get mapped to zero? That is the information loss associated with basic differentiation. So what kind of information was lost here?
I would suppose none... But if ##S(p) = \log p## then ##S(1/2) = -\log 2## which has a sign error
 

Similar threads

Back
Top