MHB Finding the vertex of a quadratic and the product of two complex numbers

drop
Messages
14
Reaction score
0
Basically I don't know anyone in real life that can help me with this, so I need help checking to see if my answers are correct :)

PART A

11) Find the vertex of f(x) = -2x^2 - 8x + 3 algebraically.

My Answer: (-2,0)

12) Multiply and simplify: (6 - 5i) (4 + 3i)

My Answer: 39 - 2i
 
Mathematics news on Phys.org
Re: Please check my answers - 6

drop said:
Basically I don't know anyone in real life that can help me with this, so I need help checking to see if my answers are correct :)

PART A

11) Find the vertex of f(x) = -2x^2 - 8x + 3 algebraically.

My Answer: (-2,0)

I get $(-2, 11)$. Now can you help me by explaining to us how did you arrive at $(-2, 0)$ as the vertex of the function of f of x?
drop said:
12) Multiply and simplify: (6 - 5i) (4 + 3i)

My Answer: 39 - 2i

Correct.:)
 
Re: Please check my answers - 6

x = -b/(2a)

x = -(-8)/2(-2)

x = 8/-4 = -2

I think I forgot to substitute -2 for x to find out y, thanks for pointing that out! (I was thinking of x intercepts) After solving for y, I got (-2,11) Thank you
 
Re: Please check my answers - 6

Yes...and as you can see, $f(-2)=-2(-2)^2-8(-2)+3=11$.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top