Finding Total Number of Optical Field Modes for Visible Light

freddie123
Messages
2
Reaction score
0
Homework Statement
Calculate the total number of optical field modes per unit volume for visible light (i.e. in the range 400-700nm).
Relevant Equations
ρ_kdk = k^2/π^2 dk
k=2π/λ
ρ_kdk = k^2/π^2 dk is the density of field modes (what we are trying to solve for here), and as ρ_kdk = ρ_λdλ, and k=2π/λ, we can rearrange this to get ρ_λdλ = 8π/λ^4dλ
This is where my confusion lies. I am not sure what to do next. I know this equation physically means the number of modes per volume for frequencies between λ and λ+dλ, so do we just take λ as 400nm and then dλ is 300nm? Or are we meant to integrate to get
-8π/3[(1/(700x10^-9)^3 - 1/(400x10^-9)^3)] = 1.06x10^20 number of modes??

I don't know how to use this equation to get the number of optical field modes per unit volume for the given frequency range.

Help would be much appreciated.

Thanks!
 
Physics news on Phys.org
Yes, you need to integrate. Your result appears correct.
 
DrClaude said:
Yes, you need to integrate. Your result appears correct.
Awesome. Thank you! ☺️
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top