Finding Units Modular Arithmetic

  • Thread starter Thread starter auru
  • Start date Start date
  • Tags Tags
    Arithmetic Units
AI Thread Summary
The discussion focuses on identifying the units of ℤ8, which are elements that divide 1 in the modular arithmetic context. The units identified through inspection of the multiplication table are ##\bar{1}##, ##\bar{3}##, ##\bar{5}##, and ##\bar{7}##, as these produce unique products. There is a request for a more systematic method to determine units in ℤn rather than relying solely on inspection. The conversation emphasizes the importance of understanding the underlying principles of modular arithmetic for broader applications. A more concrete approach to finding units in ℤn would enhance comprehension of the topic.
auru
Messages
10
Reaction score
0

Homework Statement



I am required to find the units of ℤ8.

Homework Equations



I have that
##\bar{a}## = [a]n = { a + kn, k ∈ ℤ }
##u## ∈ ℤn is a unit if ##u## divides ##\bar{1}##.

The Attempt at a Solution



I'm not sure how to go about this. My lecturer wrote out the multiplication table for ℤ8 and simply noted that by inspection of the table, the units are: ##\bar{1}##, ##\bar{3}##, ##\bar{5}##, ##\bar{7}##.

So I have the multiplication table

8 ##\bar{0}##, ##\bar{1}##, ##\bar{2}##, ##\bar{3}##, ##\bar{4}##, ##\bar{5}##, ##\bar{6}##, ##\bar{7}##,
##\bar{0}##, ##\bar{0}##, ##\bar{0}##, ##\bar{0}##, ##\bar{0}##, ##\bar{0}##, ##\bar{0}##, ##\bar{0}##, ##\bar{0}##,
##\bar{1}##, ##\bar{0}##, ##\bar{1}##, ##\bar{2}##, ##\bar{3}##, ##\bar{4}##, ##\bar{5}##, ##\bar{6}##, ##\bar{7}##,
##\bar{2}##, ##\bar{0}##, ##\bar{2}##, ##\bar{4}##, ##\bar{6}##, ##\bar{0}##, ##\bar{2}##, ##\bar{4}##, ##\bar{6}##,
##\bar{3}##, ##\bar{0}##, ##\bar{3}##, ##\bar{6}##, ##\bar{1}##, ##\bar{4}##, ##\bar{7}##, ##\bar{2}##, ##\bar{5}##,
##\bar{4}##, ##\bar{0}##, ##\bar{4}##, ##\bar{0}##, ##\bar{4}##, ##\bar{0}##, ##\bar{4}##, ##\bar{0}##, ##\bar{4}##,
##\bar{5}##, ##\bar{0}##, ##\bar{5}##, ##\bar{2}##, ##\bar{7}##, ##\bar{4}##, ##\bar{1}##, ##\bar{6}##, ##\bar{3}##,
##\bar{6}##, ##\bar{0}##, ##\bar{6}##, ##\bar{4}##, ##\bar{2}##, ##\bar{0}##, ##\bar{6}##, ##\bar{4}##, ##\bar{2}##,
##\bar{7}##, ##\bar{0}##, ##\bar{7}##, ##\bar{6}##, ##\bar{5}##, ##\bar{4}##, ##\bar{3}##, ##\bar{2}##, ##\bar{1}##,

By inspection of the table, I see that ##\bar{1}##, ##\bar{3}##, ##\bar{5}##, ##\bar{7}## all yield rows where each product is unique, indicating that they are the units of ℤ8. However, I'd like to know of a more concrete way of finding the units of ℤn, if that is possible.
 
Physics news on Phys.org
Please do not delete a post just because you have found a solution.
 
I picked up this problem from the Schaum's series book titled "College Mathematics" by Ayres/Schmidt. It is a solved problem in the book. But what surprised me was that the solution to this problem was given in one line without any explanation. I could, therefore, not understand how the given one-line solution was reached. The one-line solution in the book says: The equation is ##x \cos{\omega} +y \sin{\omega} - 5 = 0##, ##\omega## being the parameter. From my side, the only thing I could...
Back
Top