Finding Your Mistake: Solving a Limit Problem

  • Thread starter Thread starter Aliax3012
  • Start date Start date
  • Tags Tags
    Limit Mistake
Aliax3012
Messages
2
Reaction score
0
I've pondered at this problem for a long time, and I don't know where I make a mistake, can anyone give me a hint?

1. Homework Statement

find a ##\delta## such that ##|f(x)-L|<\epsilon## for all x satisfying ##0<|x-a|<\delta##

Homework Equations


[/B]
##f(x)=x^4##; ##l=a^4##

The Attempt at a Solution


[/B]
writing as the definition of limits

if ##|x-a|<\delta ##, then ##|x^4-a^4|<\epsilon##

factor the right side of equation I got

##|(x^2-a^2)(x^2+a^2)|<\epsilon##, then I can have ##|x^2-a^2|<\delta_1##

chose ##\delta_1=min(1)##, and I got ##|x^2|-|a^2|\le|x^2-a^2|<1##, adding |a^2| to both side of the inequality I got ##|x^2|<1+|a^2|##, therefore ##|x^2|+|a^2|<1+2|a^2|## , and ##|x^2+a^2|\le|x^2|+|a^2|<2|a^2|+1##

So I choose ##\delta_1=min (1, \frac{\epsilon}{2|a^2|+1})##

Therefore I have, if ##|x-a|<\delta## , then ##|x^2-a^2|<min (1, \frac{\epsilon}{2|a^2|+1})##

from my previous experience with ##\lim_{x \to a} x^2## , I know that I can pick ##\delta=min(1, \frac{\epsilon}{2|a|+1})##, under these conditions

if ##|x^2-a^2|<\epsilon##, then ##|x-a|<\delta##

so if I let ##min(1, \frac{\epsilon}{2|a^2|+1})## play the role of ##\epsilon##,

and I got ##\delta=min(1, \frac{min(1,\frac{\epsilon}{2|a^2|+1})}{2|a|+1})##

when I check the solution, it seems like I got the right idea but the solution assume ##\delta=min(1, \frac{min(1, \frac{\epsilon}{2(|a^2|+1)})}{2(|a|+1)})##

for some reason, I suppose I miss out a factor of two somewhere, but I check it again and again and could not find where I make a mistake, can somebody give me a clue?
 
Physics news on Phys.org
Aliax3012 said:
I've pondered at this problem for a long time, and I don't know where I make a mistake, can anyone give me a hint?

1. Homework Statement

find a ##\delta## such that ##|f(x)-L|<\epsilon## for all x satisfying ##0<|x-a|<\delta##

Homework Equations


[/B]
##f(x)=x^4##; ##l=a^4##

The Attempt at a Solution


[/B]
writing as the definition of limits

if ##|x-a|<\delta ##, then ##|x^4-a^4|<\epsilon##

factor the right side of equation I got

##|(x^2-a^2)(x^2+a^2)|<\epsilon##, then I can have ##|x^2-a^2|<\delta_1##

chose ##\delta_1=min(1)##, and I got ##|x^2|-|a^2|\le|x^2-a^2|<1##, adding |a^2| to both side of the inequality I got ##|x^2|<1+|a^2|##, therefore ##|x^2|+|a^2|<1+2|a^2|## , and ##|x^2+a^2|\le|x^2|+|a^2|<2|a^2|+1##

So I choose ##\delta_1=min (1, \frac{\epsilon}{2|a^2|+1})##

Therefore I have, if ##|x-a|<\delta## , then ##|x^2-a^2|<min (1, \frac{\epsilon}{2|a^2|+1})##

from my previous experience with ##\lim_{x \to a} x^2## , I know that I can pick ##\delta=min(1, \frac{\epsilon}{2|a|+1})##, under these conditions

if ##|x^2-a^2|<\epsilon##, then ##|x-a|<\delta##

so if I let ##min(1, \frac{\epsilon}{2|a^2|+1})## play the role of ##\epsilon##,

and I got ##\delta=min(1, \frac{min(1,\frac{\epsilon}{2|a^2|+1})}{2|a|+1})##

when I check the solution, it seems like I got the right idea but the solution assume ##\delta=min(1, \frac{min(1, \frac{\epsilon}{2(|a^2|+1)})}{2(|a|+1)})##

for some reason, I suppose I miss out a factor of two somewhere, but I check it again and again and could not find where I make a mistake, can somebody give me a clue?
Instead of factoring ##x^4 - a^4 = (x^2 - a^2)(x^2 + a^4)##, look at the right side of this equation as ##(x - a)(x + a)(x^2 + a^2) = (x - a)(x^3 + ax^2 + a^2x + a^3)##
 
Mark44 said:
Instead of factoring ##x^4 - a^4 = (x^2 - a^2)(x^2 + a^4)##, look at the right side of this equation as ##(x - a)(x + a)(x^2 + a^2) = (x - a)(x^3 + ax^2 + a^2x + a^3)##

Thank you for your reply Mark

Following your advice I got this,

Second Attempt at the Solution,

writing givens as the definition of limits

if ##|x-a|<\delta## then ##|x^4-a^4|<\epsilon##

factoring out the right side of the condition

##|(x-1)(x^3+a^2x+ax^2+a^3)|<\epsilon##

choose ##\delta=min(1)## then I got, ##|x-a|<1##, using triangle inequality I got ##|x|-|a|\le|x-a|<1##, set ##|x|-|a|<1##, and I got ##|x|<1+|a|##

rewrite the expression ##|(x^3+a^2x+ax^2+a^3)|\le|x^3|+|a^2|\times|x|+|a|\times|x^2|+|a^3|##

Now, I sub ##|x|## in, and the final result is ##|(1+|a|)|^3+|a^2|\times|(1+|a|)|+|a|\times|(1+|a|)|^2+|a^3||##

now, I just choose that ##\delta=min(1, \frac{\epsilon}{|(1+|a|)|^3+|a^2|\times|(1+|a|)|+|a|\times|(1+|a|)|^2+|a^3|})##

When I check the result, it matched up with the solution the book has given out in this second method, I'm just curious on why I got a different answer in first method that I choose to find ##\delta##, it seems that I got the right methodology in the first one but just different answer and I don't know where I make my mistake, I don't know where the book got ##2(|a|+1)## and ##2(|a^2|+1)## instead of ##2|a|+1## and ##2|a^2|+1##, I check again and again to see where I miss the 1 but I just can't find it, Thank you for your time Mark
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top