Fining Clebsch-Gordan coeffs in special cases, alternate method

Jesssa
Messages
50
Reaction score
0
Hello,

I was wondering, is there a way to derive the expression for these coefficients without the use of the general CGC formula?

For example, the J=0 case (this is taken from wikipedia)

65a3e02b0a4b4e80f8d539efb5c908aa.png


The 1/sqrt term is clear but the (-1)^.. term not so much, is there a way to find this coefficient?

I have read it requires the use of spinors and so on but I was wondering if there was a more simple way?

I found a derivation of the CGC using only binomial expansions, but it was difficult to see exactly how they saw the starting point, it seemed like it must have been educated guesses until worked. Other derivations of the coefficients rely on the J=0 coefficients or more advanced mathematics.

Thanks,
 
Physics news on Phys.org
The usual way to derive Clebsch-Gordan coefficients in special cases is to use stepping operators. For the example you give, if you let |0,0> = ∑ Cm|j,m>|j,-m>, you know that J+|0,0> = 0.

J+(∑ Cm|j,m>|j,-m>) = ∑ Cm√(j-m)(j+m+1) (|j,m+1>|j,-m> + |j,m>|j,-m+1>) = ∑√(j-m)(j+m+1)(Cm + Cm+1)|j,m+1>|j,-m>

In order for this sum to vanish, the Cm's must all have the same value and alternate in sign.
 
Oh I see,

Thanks for your answer!

However I am still having trouble figuring out how the negative sign of the coefficients depends on j1 and m1 in this example.

(-1)j1 + m1

From application of either of the ladder operators you get

Cm = -Cm+1

But from this it's not clear which coefficient is actually negative, only that they have opposite signs.

Is it possible to simply find things like this? What I mean is, in the case of this example, the dependence of the negative sign on j1 and m1?
 
Some of the phase factors involved in the definition of the angular momentum states and the Clebsch-Gordan coefficients are not uniquely determined, and must be arbitrarily assigned. For example the state with the highest m-value is conventionally chosen to have a plus sign. The standard choices are known as the Condon and Shortley phase conventions.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!
According to recent podcast between Jacob Barandes and Sean Carroll, Barandes claims that putting a sensitive qubit near one of the slits of a double slit interference experiment is sufficient to break the interference pattern. Here are his words from the official transcript: Is that true? Caveats I see: The qubit is a quantum object, so if the particle was in a superposition of up and down, the qubit can be in a superposition too. Measuring the qubit in an orthogonal direction might...
Back
Top