First order differential equation question

idks16
Messages
1
Reaction score
0
The problem is : dy/dx=(x(x^2+1))/4y^3 when y(0)=-1/√2
This is my work so far:
∫4y^3dy=∫x(x^2+1)dx
(y^4)/2=((x^2+1)^2)/2+c
The answer from the textbook is y=-(√(x^2+2)/2)
As you can see, my work will never equal the textbook answer when you put it in the y= stuff form. What did I do wrong?
 
Physics news on Phys.org
I got a slightly different answer than what you posted from the text

y(x) = -\sqrt{\frac{1}{2}(x^2+1)}

and mathematica agrees with me, so perhaps a typo?

Anyway, it looks like your on the right track, although go back through the integration, I think you may be off by a factor.
Then apply the boundary condition to find the integration constant.
And simplify the algebra down to the answer.
Also be conscience of taking roots,
y(x) = ±(stuff)^{1/4}
good luck
 
There is the following linear Volterra equation of the second kind $$ y(x)+\int_{0}^{x} K(x-s) y(s)\,{\rm d}s = 1 $$ with kernel $$ K(x-s) = 1 - 4 \sum_{n=1}^{\infty} \dfrac{1}{\lambda_n^2} e^{-\beta \lambda_n^2 (x-s)} $$ where $y(0)=1$, $\beta>0$ and $\lambda_n$ is the $n$-th positive root of the equation $J_0(x)=0$ (here $n$ is a natural number that numbers these positive roots in the order of increasing their values), $J_0(x)$ is the Bessel function of the first kind of zero order. I...
Are there any good visualization tutorials, written or video, that show graphically how separation of variables works? I particularly have the time-independent Schrodinger Equation in mind. There are hundreds of demonstrations out there which essentially distill to copies of one another. However I am trying to visualize in my mind how this process looks graphically - for example plotting t on one axis and x on the other for f(x,t). I have seen other good visual representations of...
Back
Top