First Order Homogeneous Equation

mattbonner
Messages
14
Reaction score
0

Homework Statement



(4y4-9x2y2-144)dx - (5xy3)dy = 0


Homework Equations


substitute y = xv
dy = dx v + dv x


The Attempt at a Solution


after substituting i got

(4x4v4-9v2x4-14x4)dx - (5v3x4)dx.v + dv.x

= (4v4-9v2-14)dx - 5v3(dx.v + dv.x) = 0
= dx(4v4-9v2-14-5v4)+dv(-5v3x)= 0
dx/x = (-5v3dv)/(v4-9v2-14)

dx/x = ((2v)/(v2+2) - (7v)/(v2+7)) dv

derive both sides

ln(x) = ln(v2+2) - 3.5ln(v2+7)
x + c = (v2+2) / (v2+7)3.5

c = (((y/x)2+2) / ((y/x)2+7)3.5) - x


what am i doing wrong?
 
Physics news on Phys.org
What reason do you have for thinking you are doing anything wrong?
 
webworks (the online assignment thing my school uses) is telling me my answer is incorrect

nvm i know where the mistake was made
 
Last edited:
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top