lfqm
- 21
- 1
Hi guys, I'm trying to understand why does the amplitude of the electric field operator in a cavity is fixed at
\left ( \displaystyle\frac{\hbar\omega}{\epsilon_{0}V} \right )^\frac{1}{2}
Every book I read says it is a normalization factor... but, normalizing an operator?, what is the meaning of that in this context?, they also call it the "aplitude per photon"...
I know the "V" (volume of the cavity) comes from the normalization of the cavity modes, but all the other quantities seem arbitrary to me.
It does makes sense for the amplitude to be fixed that way in order to obtain a correct expresion for the field intensity... but in the quantization process I don't see a mathematical reason for that specific value... why can't I multiply this amplitude by an arbitrary constant?
Thanks!
\left ( \displaystyle\frac{\hbar\omega}{\epsilon_{0}V} \right )^\frac{1}{2}
Every book I read says it is a normalization factor... but, normalizing an operator?, what is the meaning of that in this context?, they also call it the "aplitude per photon"...
I know the "V" (volume of the cavity) comes from the normalization of the cavity modes, but all the other quantities seem arbitrary to me.
It does makes sense for the amplitude to be fixed that way in order to obtain a correct expresion for the field intensity... but in the quantization process I don't see a mathematical reason for that specific value... why can't I multiply this amplitude by an arbitrary constant?
Thanks!
