Flat time slices in Gullstrand–Painlevé coordinates?

ericbrown86
Messages
2
Reaction score
0
Hi there,

If you put the Schwarzschild spacetime into a coordinate system in which the time coordinate is identified with the proper time of an observer falling radially from infinity, but keep the other coordinates the same, you get Gullstrand–Painlevé coordinates.

Amazingly, it is quickly seen that a constant-time slice in this system is flat! I thought this was a rather spectacular result, but I'm having trouble thinking of what it means physically. Can anyone help me out in understanding this beyond just the mathematical result?

Thanks!
 
Physics news on Phys.org
ericbrown86 said:
I'm having trouble thinking of what it means physically

The simplest way to think of it is that the spacelike slices of constant Painleve coordinate time are cut "at an angle" relative to the spacelike slices of constant Schwarzschild coordinate time, and the difference in the angle of cut is just enough to make the distance between two 2-spheres with surface areas ##4 \pi r_1^2## and ##4 \pi r_2^2## equal to the Euclidean distance ##r_2 - r_1## in the Painleve slices, instead of the larger distance that it is in the Schwarzschild slices.
 
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. The Relativator was sold by (as printed) Atomic Laboratories, Inc. 3086 Claremont Ave, Berkeley 5, California , which seems to be a division of Cenco Instruments (Central Scientific Company)... Source: https://www.physicsforums.com/insights/relativator-circular-slide-rule-simulated-with-desmos/ by @robphy
In Philippe G. Ciarlet's book 'An introduction to differential geometry', He gives the integrability conditions of the differential equations like this: $$ \partial_{i} F_{lj}=L^p_{ij} F_{lp},\,\,\,F_{ij}(x_0)=F^0_{ij}. $$ The integrability conditions for the existence of a global solution ##F_{lj}## is: $$ R^i_{jkl}\equiv\partial_k L^i_{jl}-\partial_l L^i_{jk}+L^h_{jl} L^i_{hk}-L^h_{jk} L^i_{hl}=0 $$ Then from the equation: $$\nabla_b e_a= \Gamma^c_{ab} e_c$$ Using cartesian basis ## e_I...
Back
Top