Flight Mach number in terms of fuel flow rate and other parameters

  • Thread starter roldy
  • Start date
232
1
I've posted on here in relation to an aerospace analysis project I'm doing. I'm stuck on one part of the project where I need to develop the performance envelope of the turbojet engine. 3 of the 9 plots that are required are Thrust vs. Mach number. On each of those plots I'll about 7 different lines that correspond to different fuel flow rates. My professor suggested to me that I find what the resulting mach number would be with a prescribed fuel flow rate and the other parameters of [tex]P_0, T_o, \pi_c, \eta_c, \dot{m}_{corr,2}[/tex] that is stated in the problem.

What's important here is the manipulation of equations to arrive at something I can use. I've tried solving this by hand and using MATLAB various times but no luck. I'm hoping that if I post my work here someone can see if I made an error in my understanding of this.

Work:

[tex]
\dot{m}_fh=\dot{m}_aT_{t2}\left(\frac{T_{t4}}{T_{t2}}-\tauc{\tau_r}\right)
[/tex]
[tex]
\tau_c=1 + \frac{\pi_c^{\frac{\gamma-1}{\gamma}}-1}{\eta_c}
[/tex]
[tex]
\tau_r=1+\frac{\gamma-1}{2}{M_0}^2
[/tex]
[tex]
T_{t2}=T_0\left(1+\frac{\gamma-1}{2}{M_0}^2\right)
[/tex]
[tex]
\frac{T_{t4}}{T_{t2}}=\left(\frac{compdesignline}{turbdesignline}\right)^2
[/tex]

[tex]
\dot{m}_a=\frac{P_{t2}}{P_{stp}}\frac{\dot{m}_{corr,2}}{\sqrt{\frac{T_{t2}}{T_{stp}}}}
[/tex]

[tex]
P_{t2}=P_0\left(1+\frac{\gamma-1}{2}{M_0}^2\right)
[/tex]

The Work:

Plug in the equations for [tex]\dot{m}_a, T_{t2}, \frac{T_{t4}}{T_{t2}}, \tau_c, \tau_r[/tex]

[tex]
\dot{m}_fh=\frac{P_{t2}}{P_{stp}}\frac{\dot{m}_{corr,2}}{\sqrt{\frac{T_{t2}}{T_{stp}}}}T_0\left(1+\frac{\gamma-1}{2}{M_0}^2\right)\left(\left(\frac{compdesignline}{turbdesignline}\right)^2-\left(1 + \frac{\pi_c^{\frac{\gamma-1}{\gamma}}-1}{\eta_c}\right)\left(1+\frac{\gamma-1}{2}{M_0}^2\right)\right)
[/tex]

Now I rewrite the radical as something I can deal with easier and substitute in for [tex]P_{t2}[/tex], and [tex]T_{t2}[/tex]. Shown in two steps

[tex]
\dot{m}_fh=\frac{P_0\left(1+\frac{\gamma-1}{2}{M_0}^2\right)}{P_{stp}}\frac{\dot{m}_{corr,2}\sqrt{T_{stp}}}{\sqrt{T_{t2}}}}}T_0\left(1+\frac{\gamma-1}{2}{M_0}^2\right)\left(\left(\frac{compdesignline}{turbdesignline}\right)^2-\left(1 + \frac{\pi_c^{\frac{\gamma-1}{\gamma}}-1}{\eta_c}\right)\left(1+\frac{\gamma-1}{2}{M_0}^2\right)\right)
[/tex]

[tex]
\dot{m}_fh=\frac{P_0\left(1+\frac{\gamma-1}{2}{M_0}^2\right)}{P_{stp}}\frac{\dot{m}_{corr,2}\sqrt{T_{stp}}}{\sqrt{T_0\left(1+\frac{\gamma-1}{2}{M_0}^2\right)}}}}T_0\left(1+\frac{\gamma-1}{2}{M_0}^2\right)\left(\left(\frac{compdesignline}{turbdesignline}\right)^2-\left(1 + \frac{\pi_c^{\frac{\gamma-1}{\gamma}}-1}{\eta_c}\right)\left(1+\frac{\gamma-1}{2}{M_0}^2\right)\right)
[/tex]

Now I collect the constants and call them some variable and name stuff in parenthesis a variable (the ones that don't have Mach number).

Let
[tex]
A=\frac{P_0\dot{m}_{corr,2}\sqrt{T_{stp}}T_0}{P_{stp}\sqrt{T_0}}
[/tex]
[tex]
B=\left(\frac{compdesignline}{turbdesignline}\right)^2
[/tex]
[tex]
C=1 + \frac{\pi_c^{\frac{\gamma-1}{\gamma}}-1}{\eta_c}
[/tex]
[tex]
D=\dot{m}_fh
[/tex]

Then
[tex]
D=A\frac{\left(1+\frac{\gamma-1}{2}{M_0}^2\right)}{\sqrt{\left(1+\frac{\gamma-1}{2}{M_0}^2\right)}}\left(1+\frac{\gamma-1}{2}{M_0}^2\right)\left(B^2-C\left(1+\frac{\gamma-1}{2}{M_0}^2\right)\right)
[/tex]

And now letting
[tex]
E=1+\frac{\gamma-1}{2}{M_0}^2
[/tex]

[tex]
D=A\frac{E^2}{E^{\frac{1}{2}}}(B^2-CE^2)
[/tex]

Simplifying

[tex]
D=AE^\frac{3}{2}(B^2-CE^2)
[/tex]

Multiplying out

[tex]
D=AB^2E^\frac{3}{2}-ACE^{\frac{7}{2}}
[/tex]

To get rid of the 1/2 power I let [tex]F=E^\frac{1}{2}[/tex]

[tex]
D=AB^2F^3-ACF^7
[/tex]

Now I want to solve this for F, since F is a function of E and E is a function of [tex]M_0[/tex]...which is what I need.

Here's the MATLAB code I used to try and solve this along with the result

EDU>> syms A B C D F
EDU>>
EDU>> D=A*B^2*F^3-A*C*F^7

D =

A*B^2*F^3-A*C*F^7


EDU>> solve(D,F)

ans =

0
0
0
(B/C^(1/2))^(1/2)
-(B/C^(1/2))^(1/2)
i*(B/C^(1/2))^(1/2)
-i*(B/C^(1/2))^(1/2)


EDU>>

This is not what I need. I'm looking for a formula that as all the variables in it.
 
272
0
I placed it in wolfram alpha and got

[PLAIN]http://www3.wolframalpha.com/Calculate/MSP/MSP1140019edbg4a1641h8h90000698bi1b8b7cf9c68?MSPStoreType=image/gif&s=42&w=147&h=49 [Broken]

[PLAIN]http://www3.wolframalpha.com/Calculate/MSP/MSP1140219edbg4a1641h8h9000067b4gbfgde9c66ee?MSPStoreType=image/gif&s=42&w=155&h=49 [Broken]

[PLAIN]http://www3.wolframalpha.com/Calculate/MSP/MSP1140419edbg4a1641h8h9000026e611fehai60fdh?MSPStoreType=image/gif&s=42&w=37&h=20 [Broken]

Reference

This simply means A has no bearing on the solution.
 
Last edited by a moderator:
232
1
I actually met with the professor and come to find out, the formula had a mistake in it. There was a term dependent on [tex]M_0[/tex] that wasn't suppose to be in there. I got the solution now. Thanks for the reply though and the effort.
 
173
1
I placed it in wolfram alpha and got

[PLAIN]http://www3.wolframalpha.com/Calculate/MSP/MSP1140019edbg4a1641h8h90000698bi1b8b7cf9c68?MSPStoreType=image/gif&s=42&w=147&h=49 [Broken]

[PLAIN]http://www3.wolframalpha.com/Calculate/MSP/MSP1140219edbg4a1641h8h9000067b4gbfgde9c66ee?MSPStoreType=image/gif&s=42&w=155&h=49 [Broken]

[PLAIN]http://www3.wolframalpha.com/Calculate/MSP/MSP1140419edbg4a1641h8h9000026e611fehai60fdh?MSPStoreType=image/gif&s=42&w=37&h=20 [Broken]

Reference

This simply means A has no bearing on the solution.
Red x's? wolfram alpha generates red x's?
 
Last edited by a moderator:
272
0
I used the link directly from the site, meaning it was temporary. Click the reference link I placed there to see what was there.
 
173
1
I used the link directly from the site, meaning it was temporary. Click the reference link I placed there to see what was there.
Ah! Thank you. :)
 

Related Threads for: Flight Mach number in terms of fuel flow rate and other parameters

Replies
6
Views
904
Replies
31
Views
27K
Replies
3
Views
637
Replies
1
Views
39K
  • Last Post
Replies
6
Views
792
  • Last Post
2
Replies
38
Views
50K
Replies
3
Views
19K
Replies
2
Views
783
Top