Flux-flux correlation function under Feynman's path integral

junt
Messages
15
Reaction score
1
This is a chemically inspired problem, but the path is fully quantum mechanics and a bunch of integrals.

How does one calculate fully quantum mechanical rate ($\kappa$) in the golden-rule approximation for two linear potential energy surfaces?

Attempt:

Miller (83) proposes $$\kappa=\int{Tr[\exp{(-\beta\hat{H})}\hat{F}\exp{(-i\hat{H}t/\hbar)}\hat{F}\exp{(i\hat{H}t/\hbar)}]}dt$$

Where integrand is simply the flux-flux correlation function: $C_{ff}(t)$. Which can be calculated under Feynman's path integral formalism. My attempt (which is in vain) at calculating $C_{ff}(t)$ is as follows:

$$C_{ff}(t)=Tr[\exp{(-\beta\hat{H})}\hat{F}\exp{(-i\hat{H}t/\hbar)}\hat{F}\exp{(i\hat{H}t/\hbar)}]$$

$$Tr[\exp{(-\beta\frac{\hat{H}}{2})}\hat{F}\exp{(-\beta\frac{\hat{H}}{2})}\exp{(-i\hat{H}t/\hbar)}\hat{F}\exp{(i\hat{H}t/\hbar)}]$$

By cyclicly permuting the operators we reach at:

$$Tr[\exp{(i\hat{H}t/\hbar)}\exp{(-\beta\frac{\hat{H}}{2})}\hat{F}\exp{(-\beta\frac{\hat{H}}{2})}\exp{(-i\hat{H}t/\hbar)}\hat{F}]$$

The Boltzmann operator and quantum mechanical propagator can be combined as follows:

$$Tr[\exp{\hat{H}(\frac{it}{\hbar}-\frac{\beta}{2})}\hat{F}\exp{\hat{H}(\frac{-it}{\hbar}-\frac{\beta}{2})}\hat{F}]$$

In the golden-rule (non-adiabatic) case, we have two electronic states 0 and 1. So F is simply a projection operator. Hence one can obtain:

$$Tr[\exp{\hat{H_0}(\frac{it}{\hbar}-\frac{\beta}{2})}\exp{\hat{H_1}(\frac{-it}{\hbar}-\frac{\beta}{2})}]$$

This basically is kernel corresponding to two potential energy surfaces $V_0$ and $V_1$. For trajectory starting at $x_a$ and ending at $x_b$, we have

$$C_{ff}(t)=\int{\int{K_0(x_a,x_b,\frac{it}{\hbar}-\frac{\beta}{2})K_1(x_b,x_a,\frac{-it}{\hbar}-\frac{\beta}{2})}}dx_adx_b$$

For a linear potential energy surfaces (PES), where my PES looks as follows:

$$V_0=k_0 x$$

$$V_1=k_1 x$$

My kernels are:

$$K_0=\sqrt{\frac{m}{2\pi t_0}}\exp{(-S_0)}$$

$$K_1=\sqrt{\frac{m}{2\pi t_1}}\exp{(-S_1)}$$

$S's$ correspond to action which is:

$$S_n(x_a,x_b,t_n)=\frac{m(x_a-x_b)^2}{2 t_n}-\frac{(x_a+x_b)k_nt_n}{2}-\frac{k_n^2t_n^3}{24m}$$

The problem is the integral for flux flux correlation function doesn't seem to be converging with the imaginary argument for $t$'s. I am trying to integrate w.r.t $x_a$, $x_b$ and $t$ from -Inf to +Inf. My final answer for rate should look something like this:

$$\exp{\frac{k_0^2k_1^2\hbar^2\beta^3}{24m(k_0-k_1)^2}}$$

Is it a gaussian integral with respect to $x_a$ and $x_b$? One has to be careful because there is also an imaginary parts in the exponent. How does one reach the final answer for rate with those integrals? Really confused! Any help is appreciated.
 
Physics news on Phys.org
So ##\hat{F}=\frac{1}{2} \{p,\delta(x)\}##?
 
DrDu said:
So ##\hat{F}=\frac{1}{2} \{p,\delta(x)\}##?

Nope! F is just flux operator from reactant to product ##(|0><1|-|1><0|)##. This is for my case (or non-adiabatic case). However, in adiabatic case it is ##(p \delta(x-s)+\delta(x-s) p)##. But I am mainly interested in non-adiabatic case, where there are two electronic states. Basically, in adiabatic case, there is one potential energy surface, and for non-adiabatic case there are two potential energy surfaces.
 
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
Is it possible, and fruitful, to use certain conceptual and technical tools from effective field theory (coarse-graining/integrating-out, power-counting, matching, RG) to think about the relationship between the fundamental (quantum) and the emergent (classical), both to account for the quasi-autonomy of the classical level and to quantify residual quantum corrections? By “emergent,” I mean the following: after integrating out fast/irrelevant quantum degrees of freedom (high-energy modes...
Back
Top