Focusing gaussian beam using a lens

yong0047
Messages
2
Reaction score
0
I am studying further about Gaussian optics.
When Gaussian beam pass through a lens, the waist location is given by

(z'-f) = (z-f)M^2

Where, z' is the waist location after lens, z is waist location before lens, f is the focal length of the lens M is the magnification.

In Gaussian optics, the magnification M is given by Mr/(1+r)^(1/2), the r of Mr should be subscript is the ray optics magnification f/(z-f), the r is given by z0/(z-f), z0 is the Rayleigh length.

However, I try to use ABCD laws on q-parameter, and also geometrically and algebraically, still can't prove the waist location is given by (z'-f) = (z-f)M^2. Can you give me some idea to solve it?
 
Physics news on Phys.org
Welcome to PF.

I've not seen the focal position put in terms of m like that before, so I'm not how much I can help. But, perhaps you could show more details of the ABCD calculation you did. If the error is in that, I can probably help.
 
then is it possible for you to prove

z' = f(z^2 + z0^2 - fz)/(z - f)^2 + z0^2

? the ABCD should be no problem. Just the algebraic don't how to prove it to be.
 
I don't see an obvious way to prove that, sorry. Even taking the ray-optics limit z0→0, it's not clear to me how to prove the resulting equation.

Since you're new here, I'll just point out that the policy here is for the student to show some work towards solving the problem, before getting help from others.

Obviously you're an advanced student, but we do get other people here who don't bother to try any work, or even look up basic equations in their textbook, and expect others to give them answers--which they don't learn from since they weren't encouraged to engage their own brain in the problem.

Regards,

Redbelly98
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...

Similar threads

Back
Top