For any Pythagorean triple, the number of primes under a + b + c must

  • Thread starter Thread starter goldust
  • Start date Start date
  • Tags Tags
    Primes
goldust
Messages
89
Reaction score
1
be no more than c? In fact, only for the first triple does equality hold. Upon examining some of the triples, I noticed this must be true. However, I'm having a hard time explaining why. Is there a good explanation for this? Many thanks!
 
Mathematics news on Phys.org
Since c is larger than a or b, you're basically saying the number of primes smaller than 3c is less than c... for c sufficiently large this is because the number of primes smaller than n is log(n). So the only worry would be that for c small you could have a counterexample and it just turns out there isn't one I guess. There might be a more solid reason but I would guess this is probably all that's happening.
 
Office_Shredder said:
Since c is larger than a or b, you're basically saying the number of primes smaller than 3c is less than c... for c sufficiently large this is because the number of primes smaller than n is log(n).

the number of primes smaller than n is approximately n/log(n), or more precisely:

lim n→∞ (pi(n) log (n)) / n = 1

where pi(n) is the number of primes smaller than n. (prime number theorem)

You don't really need the prime number theorem here. If you only consider division by 2,3 and 5 it's easy to see that pi(n)< (8/30)n + 8 (because n mod 30 must be in {1,7,11,13,17,19,23,29})
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top