What is the force on an elementary dipole from a point charge in the same plane?

andre220
Messages
75
Reaction score
1

Homework Statement


Show that the force on an elementary dipole of moment ##\mathbf{p}##, distance ##\mathbf{r}## from a point charge ##q## has components
$$\begin{eqnarray}
F_r &=& -\frac{qp\cos{\theta}}{2\pi\epsilon_0 r^3}\\
F_\theta &=& -\frac{qp\sin{\theta}}{4\pi\epsilon_0 r^3}
\end{eqnarray}$$
along and perpindicular to ##\mathbf{r}## in the plane of ##\mathbf{p}## and ##\mathbf{r}##, where ##\theta## is the angle which ##\mathbf{p}## makes with ##\mathbf{r}##.

Homework Equations


$$\Phi(\vec{r}) = \frac{1}{4\pi\epsilon_0}\frac{\vec{p}\cdot\vec{r}}{r^3}$$
$$F = -\frac{d\Phi(\vec{r})}{dr}$$
$$\vec{p} = Q\vec{r}$$

The Attempt at a Solution


Frankly, I do not know how to start this one. I need to find the force on the charge from the dipole. To do so, I take the derivative of ##\Phi## and find the force using Coulomb's law equation. And them decompose it in terms of ##r## and ##\theta##. Is this the right direction?
 
Physics news on Phys.org
Note that the force is the gradient of the potential. What you have written down in the relevant equations is simply the r-component.

Also, please show us what you get when you try to do what you said.

Note: ##Q\vec r## is the dipole moment of a point charge ##Q## in ##\vec r## with respect to the origin. This is not the situation in your problem, which has a fundamental dipole ##\vec p##.
 
andre220 said:
$$F = -\frac{d\Phi(\vec{r})}{dr}$$

Hi. The above equation is not right and you can tell because force is a vector and your expression gives you a scalar.
In 3 dimensions: F = –∇Φ, which is a gradient and you'll have to look up how to take it in spherical coordinates because the expression is far from obvious.
Lastly, without loss of generality you can take p to be along the z-axis so that pr = pr cosθ, which should simplify your calculations...
 
Sorry, didn't see Orodruin's post... I'll leave it to him from now on.
 
Yes, thank you. It was quite simple once you pointed out the fact that ##F## should be a vector. And that ##p\cdot r = p r \cos{\theta}##. Thank you for your help.
 
No problem. I just have to make it clear that although you have in general p⋅r = pr cosδ, where δ is the angle between p and r, you can take δ = θ (the polar angle of your spherical coordinates) only if you have freedom in choosing the direction of p, which is the case here. It's a detail but always important to understand clearly...
 
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
The value of H equals ## 10^{3}## in natural units, According to : https://en.wikipedia.org/wiki/Natural_units, ## t \sim 10^{-21} sec = 10^{21} Hz ##, and since ## \text{GeV} \sim 10^{24} \text{Hz } ##, ## GeV \sim 10^{24} \times 10^{-21} = 10^3 ## in natural units. So is this conversion correct? Also in the above formula, can I convert H to that natural units , since it’s a constant, while keeping k in Hz ?
Back
Top