# Force on Electron Due to Two Charged Objects in an Electric Field

## Homework Statement

Two charged objects are separated by a distance of L=0.4650 m as shown in the diagram.
Object Q1 has a charge of +5.250 nC. Object Q2 has a charge of +2.960 nC.

A) What is the magnitude and direction of the electric field at Point A, which is located a distance d=0.09300 m to the right of Object Q1?

B) If you were to place an electron at Point A, what would be the magnitude and direction of the force on the electron?

## Homework Equations

E= k (q/r^2)

F= (k*Q1*Q2)/ (r^2)

## The Attempt at a Solution

A) [ (8.99E9) ((5.25E-9)/(.09300^2) ] - [ (8.99E9) ((2.96E-9)/(.372^2) ]=
= 5265 N/C = 5.265E3 N/C to the right THIS ANSWER IS CORRECT

B) The charge on an electron is -1.6E-19. I am also assuming that i will need Coulombs Law to solve.
[(8.99E9)(5.25E-9)(2.96E-9)] / (.4650) =.64610E-7 to the left
This is not the right answer and I'm not sure why. AM i even using the right formula?

Any help would be greatly appreciated. Thanks!

#### Attachments

• 992 bytes Views: 348

Related Introductory Physics Homework Help News on Phys.org
gneill
Mentor
You could use Coulomb's law and work directly with the charge values (you'd need to consider all the charges involved). But since you've already determined the electric field at point A you can use a different formula which relates the force on a charge due to the electric field...

You could use Coulomb's law and work directly with the charge values (you'd need to consider all the charges involved). But since you've already determined the electric field at point A you can use a different formula which relates the force on a charge due to the electric field...
The only equation I have that relates force and charge is E= F/q
(5.265E3)= F/(-1.6E-19)
(5.265E3)(-1.6E-19)= F
F= 8.42E-16 N to the left

Was that the equation you were talking about?

gneill
Mentor
The only equation I have that relates force and charge is E= F/q
(5.265E3)= F/(-1.6E-19)
(5.265E3)(-1.6E-19)= F
F= 8.42E-16 N to the left

Was that the equation you were talking about?
Yup. Most often you'll see it in the arrangement F = qE. It's analogous to the formula for force due to a gravitational field: F = mg. Makes it easy to remember

1 person
Yup. Most often you'll see it in the arrangement F = qE. It's analogous to the formula for force due to a gravitational field: F = mg. Makes it easy to remember
Oh, OK! That makes sense. Thank you for your help!