Form of Lorentz Transformation Using West-Coast Metric

LittleSailor
Messages
6
Reaction score
0
This is a fairly trivial question I think. I'm only asking it here because after some googling I was unable to find its answer. I was at one point led to believe that the form of the Lorentz-transformation matrix is dependent on the convention used for the Minkowski metric. Specifically it was my understanding that

[γ, βγ, 0, 0]
[βγ, γ, 0, 0]
[0, 0, 1, 0]
[0, 0, 0, 1]

was the transformation matrix when the West-coast metric, diag(1, -1, -1, -1), is used. This is the inverse of the more commonly encountered

[γ, -βγ, 0, 0]
[-βγ, γ, 0, 0]
[0, 0, 1, 0]
[0, 0, 0, 1]

which I know is correct at least for the East-coast metric, diag(-1, 1, 1, 1). I was working a problem recently and got a result using the former of these transformation matrices that was clearly incorrect. Does the Lorentz transformation's form actually depend on the convention for the metric, or did I concoct this entire distinction? Perhaps I misunderstood one of my professors.
 
Physics news on Phys.org
The form of the Lorentz transform does not depend on whether you use +t metric or -t metric. The two transform matrices you give are simply inverses of each other corresponding to boosts in opposite directions.
 
As a group the lorentz transformations, \Lambda^{\mu}_{\nu} are defined by:

\begin{equation}
\Lambda^{\mu}_{\nu} \eta_{\mu \rho} \Lambda^{\rho}_{\sigma} = \eta_{\nu \sigma}
\end{equation}

Thus, the metric should not affect the transform because you can multiply both sides of the equation to switch metric convention.
 
Haha, I feel silly now--thanks, guys.
 
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...
According to the General Theory of Relativity, time does not pass on a black hole, which means that processes they don't work either. As the object becomes heavier, the speed of matter falling on it for an observer on Earth will first increase, and then slow down, due to the effect of time dilation. And then it will stop altogether. As a result, we will not get a black hole, since the critical mass will not be reached. Although the object will continue to attract matter, it will not be a...
Back
Top