1. Not finding help here? Sign up for a free 30min tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Fourier analysis of wave packet

  1. Feb 4, 2016 #1
    1. The problem statement, all variables and given/known data
    Assume ## \phi(k_x ) = \sqrt2 {\pi}## for ## \bar{k}_x - \delta \le k_x \le \bar{k}_x + \delta##, and ##= 0## for all other values of ##k_x##. Calculate ##\psi(x, 0)##, and show that ## \Delta x \Delta k_x \approx 1 ## holds if ## \Delta x## is taken as the width at half maximum.

    2. Relevant equations
    ## \psi (x,0) = \frac{1}{\sqrt{2 \pi}} \int \phi (k_x) e^{i k_x x} dk_x ##

    3. The attempt at a solution
    ## \psi (x,0) = \frac{1}{\sqrt{2 \pi}} \int_{\bar{k}_x - \delta } ^{\bar{k}_x + \delta} \sqrt{2 \pi} e^{i k_x x} dk_x ##

    ## = \frac{ e^{i k_x x}}{ix} |_{\bar{k}_x - \delta } ^{\bar{k}_x + \delta} ##

    ## = \frac{ e^{i \bar{k}_x x}}{x} 2 sin(x\delta) ##. If ##\delta## is small we can approximate to ## e^{i \bar{k}_x x} 2 \delta ##

    Is this right please?
    ---------------
    How do I argue that ## \Delta x \Delta k_x \approx 1 ## holds if ## \Delta x## is taken as the width at half maximum?
    I think that ##\psi_{max} = 2 \delta ## ?
     
  2. jcsd
  3. Feb 4, 2016 #2

    George Jones

    User Avatar
    Staff Emeritus
    Science Advisor
    Gold Member

    Don't make this approximation.
     
  4. Feb 4, 2016 #3
    I expected that ... in the meantime I thought of using a taylor approx, making it

    ## = e^{i \bar{k}_x x} (2 - \frac{x^2}{3} + \frac{x^4}{60} ) ## ?
     
  5. Feb 4, 2016 #4

    George Jones

    User Avatar
    Staff Emeritus
    Science Advisor
    Gold Member

    The sinc function is defined by

    $$sinc(u) = \frac{sinu}{u}.$$

    Play around on WolframAlpha to find the u that gives the half-maximum of sinc(u).
     
  6. Feb 9, 2016 #5
    Sorry if I am being dense, but I have ##\frac{sin(x \delta)}{x} ## ? Should I be thinking of ##\frac{\delta sin(x \delta)}{x \delta} ##

    In which case, would the maximum be ##|\psi^*| = (2 \delta sinc (\delta x))^2 ## ?
     
  7. Feb 10, 2016 #6

    blue_leaf77

    User Avatar
    Science Advisor
    Homework Helper

    Yes, you can do that.
    I don't know what you actually want to calculate, if you want to calculate ##\psi(x,0)##, then there you have it with the sinc function. If you want calculate its magnitude (not maximum), it will be ##2\delta \textrm{sinc}(x\delta)##.
     
  8. Feb 12, 2016 #7
    So now I have ## \frac{1}{2} | \psi |^2 = 2 \delta^2 [sinc (x \delta)]^2 ## but the maximum of ## sinc^2 ## is 1, so ## \frac{1}{2} | \psi |^2 = 2 \delta^2 = 2 \delta^2 [sinc (x \delta)]^2 ##, but I have no idea how to solve this eqtn for x, and thence ## \Delta x ##?

    Also the width of ## \phi(k_x)## is ## 2 \delta ##, that is ## \Delta k_x ##?
     
  9. Feb 13, 2016 #8

    blue_leaf77

    User Avatar
    Science Advisor
    Homework Helper

    Shouldn't it be ##\frac{1}{2} | \psi |^2 = \delta^2 = 2 \delta^2 [sinc (x \delta)]^2 ##?
    Indeed it's not possible to solve for ##x## analytically, the best you can do without the help of computer is to approximate the sine with its Taylor expansion truncated after, e.g two terms. Doing this,
    $$
    1=2\left(\frac{x\delta - \frac{1}{6}(x\delta)^3}{x\delta}\right)^2 \\
    \frac{x\delta}{\sqrt{2}} = x\delta - \frac{1}{6}(x\delta)^3
    $$
    Solving for ##x## should be easy.
    Yes.
     
  10. Feb 13, 2016 #9
    Thanks (divided one side by 2 then got distracted...).
    I quite often see Taylor truncated to 2 terms, is that a reasonable rule of thumb for OM? Or just a convenience because of the complexity the 3rd term usually adds? Also, If you wouldn't mind checking my algebra here...my final answer seems a little high?

    ##\psi: 1 = 2(1- \frac{(x \delta)^2}{6})^2 ##
    ## \therefore \frac{(x \delta)^2}{3} = 1 - \frac{1}{\sqrt{2}}##
    ## \therefore x = \pm \frac{1}{\delta} [3(1 - \frac{1}{\sqrt{2}})]^{\frac{1}{2}} ##
    ## \therefore \Delta x = \frac{2}{\delta} (0.54) ##
    ## \therefore \Delta x \Delta k_x = 2 \delta \frac{1.08}{\delta} = 2.165 ## ?
     
  11. Feb 14, 2016 #10

    blue_leaf77

    User Avatar
    Science Advisor
    Homework Helper

    The number of terms in the expansion to be retained depends on the desired accuracy of the calculation, if you want you can add the next term into the expansion above if you want it to be more accurate.
    The denominator on the LHS is not correct.
    After taking into account the correction I pointed out above, the answer may even goes up slightly. So long as the numerical value is not greater than ten (or five to be safe), it's fine. In fact, the boxcar function is a wide localized function as compared to the other localized functions whose width can vary depending on the way it is defined.
     
  12. Feb 14, 2016 #11
    Thanks, I think that 'feel' for the max will be useful, and I've learned a lot else through your help.
    I get 5.3 after fixing that denominator (should have been 6, I mustn't take short cuts in my algebra)
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?
Draft saved Draft deleted



Similar Discussions: Fourier analysis of wave packet
  1. Wave packet (Replies: 1)

  2. Wave packet (Replies: 2)

  3. Wave packet expansion (Replies: 14)

Loading...