Hello,(adsbygoogle = window.adsbygoogle || []).push({});

I recently learned about the Fourier Series and how it can be used decompose a periodic signal into a sum of sinusoids. I can calculate all the coefficients by hand, but I wanted Mathematica to do that for me. I attempted to write a code, and it does give the desired output.

I wanted to animate the output, in the sense that Mathematica would display more and more corrections over time. So I want to start by displaying 1 partial sum, and over time display many partial sums. I looked into the Animate function to do this, but ran into some problems as it requires an index to iterate over. Naturally, I chose the number of partial sums included as the iterator. So instead of having the number of partial sums to include as an integer, I make it a variable. But doing so leaves Mathematica in some infinite loop. Below is my code. I tried to include as many comments as possible, and would appreciate any help.

Code (Text):

(*Define basis functions of sin and cosine*)

cosBasis[m_, t_, T_] := Cos[2*Pi*m*t/T];

sinBasis[m_, t_, T_] := Sin[2*Pi*m*t/T];

(*Define inner product*)

fourierIP[f_, g_] := Integrate[f*g, {t, -Pi, Pi}]

(*Define function to calculate coeffecients of sin and cosine,

depends on (f[t],period,m)*)

fourierSinCoeff[func_, T_, m_] :=

fourierIP[func[t], sinBasis[m, t, T]]/

fourierIP[sinBasis[m, t, T], sinBasis[m, t, T]];

fourierCosCoeff[func_, T_, m_] :=

fourierIP[func[t], cosBasis[m, t, T]]/

fourierIP[cosBasis[m, t, T], cosBasis[m, t, T]];

(*Compute M^th partial sum of fourier coeffecients*)

fourierSeries[func_, t_, T_, M_] :=

Sum[fourierCosCoeff[func, T, m]*cosBasis[m, t, T], {m, 0, M}] +

Sum[fourierSinCoeff[func, T, m]*sinBasis[m, t, T], {m, 1, M}];

(*SquareWave*)

const = 0.5;(*height of square wave*)

squareWave[t_] :=

Piecewise[{{const, 0 < t <= Pi}, {0,

Pi < t <= 2*Pi}}];(*construct square wave*)

periodicExtension[func_, nPeriods_] :=

Sum[func[t + 2*Pi*n], {n, -nPeriods,

nPeriods}];(*extend square wave over multiple periods**)

plot1 = Plot[periodicExtension[squareWave, 4], {t, -4*Pi, 4*Pi},

PlotRange -> {{-4*Pi, 4*Pi}, {-1, 1}},

ExclusionsStyle -> Dotted](*display square wave*)

fourierCosCoeff[f, 2*Pi, m];

fourierSinCoeff[f, 2*Pi, m];

output = fourierSeries[squareWave, t, 2*Pi,

9];(*include 9 partial sums*)

plot2 = Plot[output, {t, -4*Pi, 4*Pi}];

Show[plot1, plot2](*displays plot of square wave and fourier wave together*)

(*The above code works just fine, the moment I switch the

number of partial sums to include into a variable, I get problems*)

(*Now to animate over many partial sums*)

output1 = fourierSeries[squareWave, t, 2*Pi, m];

Animate[output1, {m, 1, 3, 1}]

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Fourier Series Expansion using Mathematica

Loading...

Similar Threads for Fourier Series Expansion |
---|

How to distinguish the decimal expansions of irrational numbers from random numbers? |

Discrete Fast Fourier transform with FFTW in FORTRAN77 |

**Physics Forums | Science Articles, Homework Help, Discussion**