Fourier Transform of Cosine Function with Step Function Constraints

  • Thread starter Thread starter electron2
  • Start date Start date
electron2
Messages
46
Reaction score
0
<br /> f(t-a)u_a(t)-&gt;F(s)e^{-as}<br />
<br /> g(t)={\cos (t),0&lt;=t&lt;\pi}<br />
<br /> g(t)={0,t&gt;=\pi}<br />

<br /> g(t)=\cos(t)[ u(t)-u(t-\pi)]=\cos(t) u(t)-\cos(t) u(t-\pi)=\frac{s}{s^2-1}+??\\<br />

i can't apply the formula in the last part
 
Physics news on Phys.org
Trig formula cos(t-\pi)= -cos(t).
 
g(t)=\cos(t)[ u(t)-u(t-\pi)]=\cos(t) u(t)+\cos(t-\pi) u(t-\pi)=\frac{s}{s^2-1}+\frac{s}{s^2-1}e^{-\pi}\\

is it correct?
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top