xoureo
- 7
- 0
Homework Statement
If F(k)=TF\{f(x)\},k\neq 0 where TF is the Fourier transform ,and
F(0)=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}f(u)du\neq 0 ,
show that
TF\{\int_{-\infty}^{x}f(u)du\}=-i \frac{F(k)}{k} +\pi F(0)\delta(k)
Homework Equations
The Attempt at a Solution
I attempt the following:
TF\{\int_{-\infty}^{x}f(u)du\}=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty} \{\int_{-\infty}^{x}f(u)du\}e^{-ikx}dx
and , integration by parts, with
w=\int_{-\infty}^{x}f(u)du
dw=f(x)dx
give
\frac{1}{\sqrt{2\pi}}\{\int_{-\infty}^{x}f(u)du \frac{i}{k} e^{-ikx}\}|_{-\infty}^{\infty} -\frac{1}{\sqrt{2\pi}} \frac{i}{k}\int_{-\infty}^{\infty}f(x)e^{-ikx}dx
The last term is
-\frac{i}{k}F(k)
What should i do with the first?. I do this, but it probably be bad:
\frac{i}{k} e^{-ikx}\}|_{-\infty}^{\infty}=\int_{-\infty}^{\infty}e^{-ikx}dx = 2\pi\delta(k)
and
\frac{1}{\sqrt{2\pi}}\left[\lim_{x\rightarrow\infty}\int_{-\infty}^xf(z)dz-\lim_{x\rightarrow -\infty}\int_{-\infty}^xf(z)dz\right] = F(0)
Then,
<br /> \int_{-\infty}^{\infty}\frac{dx}{\sqrt{2\pi}}\int_{-\infty}^xf(z)dze^{-ikx}=-i\frac{F(k)}{k}+2\pi F(0)\delta(k)<br />
where is an extra 2.
I tried to do this problem using convolution, but again i can't achieve the desired result:
(f*g)(x)=\int_{-\infty}^{\infty}f(u)g(x-u)du
If g(x-u) is the Heaviside function, and with x-u>0 , the convolution is
(f*g)(x)=\int_{-\infty}^{\infty}f(u)g(x-u)du=\int_{-\infty}^{x}f(u)du
Then,
TF\{\int_{-\infty}^{x}f(u)du\}=TF\{(f*g)(x)\}=\sqrt{2\pi}F(k)G(k)
But, the Fourier transform of the Heaviside function is:
TF\{g(x)\}=\frac{-i}{k\sqrt{2\pi}}+\sqrt{\frac{\pi}{2}}\delta(k)
Hence,
TF\{\int_{-\infty}^{x}f(u)du\}=\frac{-iF(k)}{k}+\pi F(k)\delta(k)
But, in the last term appears F(k) , and i want to get F(0). What is wrong??
Thanks