Calculating the Fourier Transform of f(x) = 1 if -1<x<1, f(x) = 0 otherwise

leopard
Messages
123
Reaction score
0

Homework Statement



Find the Fourier transform of the function f(x) = 1 if -1<x<1, f(x) = 0 otherwise

2. The attempt at a solution

\hat{f}(w) = \frac{1}{\sqrt{2 \pi}} \int ^{1}_{-1}e^{-iwx}dx = \frac{1}{\sqrt{2 \pi}} [\frac{e^{-iwx}}{-iw}]^{1}_{-1} = \frac{1}{-iw \sqrt{2 \pi}}(e^{-iw} - e{iw}) = \sqrt{\frac{2}{\pi}} \frac{sinw}{w}

According to my book, the correct answer is \sqrt{\frac{\pi}{2}} \frac{sinw}{w}

Who is right?
 
Physics news on Phys.org
I can't find any mistakes in your solution.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top