- 665
- 68
Homework Statement
I have to find the Fourier transform of
f(x)=\frac{\beta^2}{\beta^2+x^2}
Homework Equations
Fourier Transform is given by
F(k) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-ikx}f(x) dx
The Attempt at a Solution
I'm having trouble with the integration after I separate into two integrals using partial fractions:
F(k)=\frac{\beta^2}{\sqrt{2\pi}}\int_{-\infty}^{\infty} \frac{e^{-ikx}}{\beta^2+x^2}dx
Note
\frac{1}{\beta^2+x^2}=\frac{1}{2i\beta} \left( \frac{1}{x-i\beta} - \frac{1}{x+i\beta} \right)
F(k)=\frac{1}{\sqrt{2\pi}} \frac{\beta}{2i} \left[ \int_{-\infty}^{\infty} \frac{e^{-ikx}}{(x-i\beta)} dx - \int_{-\infty}^{\infty} \frac{e^{-ikx}}{(x+i\beta)} dx \right]
Are there any suggestions on how to proceed?