xylai
- 58
- 0
Lots of works about the high-order harmonic generation in the intense laser-atom physics obtain the harmonic spectrum by Fourier transformation of the dipole moment d(t) (=\int\varphi\varphi^{*}z):
p(\omega)=|\frac{1}{tf-ti}\int d(t)exp(-i\omega)dt|^{2}
Here, I want to use the Monte-Carlo method to generate the Harmonics. The trajectory r(t) of an electron in 3D Hydrogen system can be get. Then how can I obtain the harmonic spectrum for one electron? Can I use the Fourier transformation of r(t) directly?
p(\omega)=|\frac{1}{tf-ti}\int r(t)*cos(\theta)exp(-i\omega)dt|^{2}
Thank you!
p(\omega)=|\frac{1}{tf-ti}\int d(t)exp(-i\omega)dt|^{2}
Here, I want to use the Monte-Carlo method to generate the Harmonics. The trajectory r(t) of an electron in 3D Hydrogen system can be get. Then how can I obtain the harmonic spectrum for one electron? Can I use the Fourier transformation of r(t) directly?
p(\omega)=|\frac{1}{tf-ti}\int r(t)*cos(\theta)exp(-i\omega)dt|^{2}
Thank you!