Free Hamiltonian problem for relativistic mechanics

forhad_jnu
Messages
2
Reaction score
0
I need to elaborate the equation ,and need to know what is the physical significance and how matrices will manipulate in the equation $$
\hat{H} = (\hat{\tau_3}+i\hat{\tau_2})\frac{\hat{p}^2}{2m_0}+ \hat{\tau_3}m_0 c^2 = \frac{\hat{p}^2}{2m_0}
\left| \begin{array}{ccc}
1 & 1 \\
-1 & -1 \\
\end{array}\right| \frac{\hat{p}^2}{2m_0} + \left| \begin{array}{ccc}
1 & 0 \\
0 & -1 \\
\end{array}\right| m_0 c^2
$$

Where $$\tau_1 , \tau_2,\tau_3
$$ are Pauli matrices and Hamiltonian comes from "Schrodinger form of the free Klein_Gordon equation
And also why did we added Pauli matrices in the free Hamiltonian ?
 
Physics news on Phys.org
This equation arises from trying to make the second-order Klein-Gordon Equation look like the first-order Dirac Equation. Define a matrix Ψ = (u v) where u = φ - iħ/mc2 ∂φ/∂t and v = φ + iħ/mc2 ∂φ/∂t. Then Ψ obeys a matrix Schrodinger Equation, iħ∂Ψ/∂t = HΨ where the matrix Hamiltonian H is what you have written. Expressing it in terms of Pauli matrices is just for convenience.

The problem is that H is not Hermitian due to the iτ2 term. What Feshbach and Villars did to fix this was again by analogy with the Dirac Equation. In the Dirac Equation we modified the definition of the adjoint, and instead of ψ† we use ψ ≡ ψ†γ0. Here we use φ ≡ φ†τ3. In terms of this "metric" the norm of ψ is (ψ, ψ) ≡ ∫φ†τ3φ d3x = ∫(u*u - v*v) d3x = iħ/mc2 ∫ (φ* ∂φ/∂t - ∂φ*/∂t φ) d3x, which is the familiar conserved quantity.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!

Similar threads

Back
Top