MHB From quadratic form to vertex form

AI Thread Summary
To convert the quadratic expression $-x^2 + 4x - 1$ into vertex form, the completing the square method is suggested. The negative sign in front of the $x^2$ term complicates the process, and factoring it out simplifies the equation. By rewriting the expression as $-(x^2 - 4x + 1)$, the vertex form can be derived. The final result is $y = -(x - 2)^2 + 3$, indicating the vertex at (2, 3). This method effectively clarifies the transformation into vertex form.
mathlearn
Messages
331
Reaction score
0
$-x^2+4x-1$ should be converted to the vertex form of $y=k-(x-h)^2$

How can this be solved by factoring or any other method ?

My attempt to solve this problem , I will be using the completing the square method,

$\left(-x^2+4x+\frac{-b}{2a}\right)=1+\frac{-b}{2a}$

Here $\frac{-4}{-2}=2$

$\left(-x^2+4x+2\right)=1+2$

$\left(-x+2\right)^2=1+2$

$\left(-x+2\right)^2+3$

It's incorrect

Many Thanks (Happy)
 
Last edited:
Mathematics news on Phys.org
mathlearn said:
$-x^2+4x-1$ should be converted to the vertex form of $y=k-(x-h)^2$

How can this be solved by factoring or any other method ?

My attempt to solve this problem , I will be using the completing the square method,

$\left(-x^2+4x+\frac{-b}{2a}\right)=1+\frac{-b}{2a}$

Here $\frac{-4}{-2}=2$

$\left(-x^2+4x+2\right)=1+2$

$\left(-x+2\right)^2=1+2$

$\left(-x+2\right)^2+3$

It's incorrect

Many Thanks (Happy)
It's the negative in front of the x^2 term that's causing you problems. I'd factor it out at the beginning:
[math]y = -x^2 + 4x - 1 = -(x^2 - 4x + 1) = \text{ ... }[/math]

I get [math]y = -(x - 2)^2 + 3[/math].

-Dan
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top