Functional Equation & Feynman Path Integral Solution

Karlisbad
Messages
127
Reaction score
0
Is there any Functional equation In functional derivatives so the Feynman Path integral is its solution?.. i mean given:

A[\Phi]=\int \bold D[\Phi]e^{iS/\hbar}

Then A (functional) satisfies:

G( \delta , \delta ^{2} , B[\phi] )A[\Phi]=0

where B is a known functional and "delta" here is the functional derivative.
 
Physics news on Phys.org
I think there would be some difficulty in defining such a thing since the path integral isn't technically an integral at all, since it's defined over a space with no clearly defineable measure.
 
If you take this A to be the vacuum to vacuum transition amplitude then this equation exists and as far as I know it is known as Dyson-Schwinger equation. You can find the derivation in section 6.4 of Ryder's "Quantum Field Theory".
 
Last edited:
"Hellfire" is the Dyson-Schwinger equation a method to evaluate propagators (Non-perturbative) without recalling to Path Integrals?? :confused:
 
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
I asked a question related to a table levitating but I am going to try to be specific about my question after one of the forum mentors stated I should make my question more specific (although I'm still not sure why one couldn't have asked if a table levitating is possible according to physics). Specifically, I am interested in knowing how much justification we have for an extreme low probability thermal fluctuation that results in a "miraculous" event compared to, say, a dice roll. Does a...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
Back
Top