Gaining Intuition: Linear Transforms & Coordinate Functions

  • Thread starter Thread starter Septimra
  • Start date Start date
  • Tags Tags
    Intuition
Septimra
Messages
27
Reaction score
0
So I been working with quaternions as you all know. I get them basically, but to really understand their rotation properties i decided to better understand matrices and how they relate to real valued functions.

a matrix is a transformation of a vector from one vector space to another through a linear transformation.

lets say we are going from ℝ3 to ℝ2

f(v) = f(vx+vy+vz) = f(vx) + f(vy) + f(vz)

This is a linear transformation so these properties can be exploited.

Now we must define how the basis vectors of a vector in a certain vector space are transformed.

The basis vectors can be written as a linear combination of the basis vectors of the vector space as well.

vx = 1vx + 0vy + 0vz

vy = 0vx + 1vy + 0vz

vz = 0vx + 0vy + 1vz

The linear transformation transforms these basis vectors into a linear combination of these basis vectors.

f(vx) = 2w1 + 5w2

f(vy) = 3w1 + 7w2

f(vz) = 4w1

Finally my question is how would you write that if as a coordinate function f(vx, vy, vz) = ?

That equation would then have to satisify all the basis vectors as well

f(1,0,0) = ?

f(0,1,0) = ?

f(0,0,1) = ?

so when you add all these values together you should get the same as a matrix multiplication of

[2 3 4] *[1]
[5 7 0] [1]
[1]

I have no idea how to write it because i have rarely worked with coordinate functions and cannot find much on it online. But i have come to realize that the key to understanding matrices is to understand coordinate functions. Thanks alot
 
Physics news on Phys.org
Knowing how the basis vectors are transformed can help work out what happens with the transformation in general since, then, when you apply the function to a vector, you only need to resolve the vector against the basis.


Since you started with quaternions, you should probably study the 3D rotation matrix.
The main advantage of the quaternion approach is that it requires fewer computational steps - so you use it to build fast-paced video-games. Everywhere else uses the matrix approach.

You'll get a better appreciation of how the different part relate to each oter if you see a concrete example.
Look at:
Tan S.M. (2003) Classical Mechanics http://home.comcast.net/~szemengtan/ClassicalMechanics/SingleParticle.pdf
Section 1.8: "dynamics of a uniformly rotating frame."
 
Last edited by a moderator:
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...

Similar threads

Replies
1
Views
3K
Replies
10
Views
2K
Replies
2
Views
1K
Replies
15
Views
2K
Replies
1
Views
1K
Back
Top