Galois extension of a field with Characteristic 0

bham10246
Messages
61
Reaction score
0
This is something I've been trying to work on on my own for the past few days but I'm not sure how to approach it.

My Question:
a. Let E be a Galois extension of a field F with characteristic 0. Prove that there is a unique smallest subfield K such that F \subseteq K \subseteq E, K is normal over F and E is subradical over K.
[One needs the following result: Let A and B be solvable subgroups of a group G and suppose that A is normal in G. Then AB is solvable.]

b. Let f be an irreducible polynomial over \mathbb{Q} which has degree 5 and at least two complex roots. Prove that Gal(f) has order 10, 20, 60, or 120.

Thanks in advance for any kind of direction that you can provide me with...
 
Physics news on Phys.org
what does smallest mean? the intersectiuoin of all such thigns? or smallest degree?

and are your extensions of finite degree?

so i guess you are claiming there is a unique largest normal solvable subgroup of a group. your description majkes it fairly obvious how to proceed.
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
Back
Top