Gauge Invariance of the Schrodinger Equation

Click For Summary
SUMMARY

The discussion centers on the gauge invariance of the Schrödinger equation, specifically the transformation of wave functions and potentials under gauge transformations. The participants confirm that the transformation $$\psi' = e^{-\frac{iq\lambda}{\hbar c}}\psi$$ leads to the conclusion that the Schrödinger equation remains invariant under the gauge transformations of the electromagnetic potentials $$A' = A - \nabla \lambda$$ and $$\phi' = \phi - \frac{\partial \lambda}{\partial t}$$. It is established that the operator $$(-i\hbar \nabla - \frac{q}{c}A + \frac{q}{c}\nabla \lambda)$$ can act on the transformed wave function $$\psi'$$ in a manner that preserves the structure of the equation, confirming the gauge invariance without needing to multiply everything out explicitly.

PREREQUISITES
  • Understanding of the Schrödinger equation and its components.
  • Familiarity with gauge transformations in quantum mechanics.
  • Knowledge of electromagnetic potentials and their role in quantum mechanics.
  • Basic proficiency in calculus and differential operators.
NEXT STEPS
  • Study the implications of gauge invariance in quantum field theory.
  • Learn about the mathematical formalism of gauge transformations in electromagnetism.
  • Explore the relationship between gauge invariance and conservation laws in physics.
  • Investigate the role of the wave function in quantum mechanics and its transformations.
USEFUL FOR

Physicists, particularly those specializing in quantum mechanics and quantum field theory, as well as students and researchers interested in the mathematical foundations of gauge invariance and its applications in theoretical physics.

Diracobama2181
Messages
70
Reaction score
3
TL;DR
Find in a quick way to prove gauge invariance without entailing a ton of messy math
Given the Schrödinger equation of the form $$-i\hbar\frac{\partial \psi}{\partial t}=-\frac{1}{2m}(-i\hbar \nabla -\frac{q}{c}A)^2+q\phi$$
I can plug in the transformations $$A'=A-\nabla \lambda$$ , $$\phi'=\phi-\frac{\partial \lambda}{\partial t}$$, $$\psi'=e^{-\frac{iq\lambda}{\hbar c}}\psi$$
$$-i\hbar\frac{\partial \psi'}{\partial t}=(-\frac{1}{2m}(-i\hbar \nabla -\frac{q}{c}A+\frac{q}{c}\nabla \lambda)^2+q\phi-q\frac{\partial \lambda}{\partial t})\psi'$$.

Now when act on $$\psi'$$ on the right hand side, I come across the term $$(-i\hbar \nabla -\frac{q}{c}A+\frac{q}{c}\nabla \lambda)^2\psi'$$
I now that $$(-i\hbar \nabla -\frac{q}{c}A+\frac{q}{c}\nabla \lambda)\psi'=e^{-\frac{iq\lambda}{\hbar c}}(-i\hbar \nabla -\frac{q}{c}A)\psi$$, but can I just say that $$(-i\hbar \nabla -\frac{q}{c}A+\frac{q}{c}\nabla \lambda)^2\psi'=e^{-\frac{iq\lambda}{\hbar c}}(-i\hbar \nabla -\frac{q}{c}A)^2\psi$$, and if so, why? (In other words, is there a reason why I could simply do this twice rather than multiplying everything out, which gets messy). Thanks.
 
Physics news on Phys.org
Why not? Your exponential factor is just a number, and it commutes with every operator inside the parentheses.
 
The exponential is not just a number, because ##\lambda=\lambda(t,\vec{x})##. The problem with #1 is the gauge transformation of the em. field and several sign mistakes. The SGE reads (with ##\hbar=c=1##)
$$\mathrm{i} \partial_t \psi = -\frac{1}{2m} (-\mathrm{i} \vec{\nabla}-q \vec{A})^2 \psi + q \phi \psi.$$
Now you make
$$\psi'=\exp(\mathrm{i} q \lambda), \quad \vec{A}'=\vec{A}+\vec{\nabla} \lambda, \quad \phi=\phi-\partial_t \lambda.$$
Then ##\psi'## with the potentials ##\phi'## and ##\vec{A}'## fullfills the same SGE as ##\psi## with the potentials ##\phi## and ##\vec{A}##, i.e., the physics is invariant under gauge transformations, because ##\psi'## differs from ##\psi## only by a phase factor and the potentials only by a gauge transformation, which doesn't change the physical fields ##\vec{E}## and ##\vec{B}##.
 
  • Like
Likes   Reactions: Diracobama2181, bhobba and Mentz114
I know it is gauge invariant. I suppose it is not clear the issue I am having. I know it is the case that
$$(-i\hbar \nabla -\frac{q}{c}A+\frac{q}{c}\nabla \lambda)\psi'=e^{-\frac{iq\lambda}{\hbar c}}(-i\hbar \nabla -\frac{q}{c}A)\psi$$.
I want to know if it is trivially true that $$(-i\hbar \nabla -\frac{q}{c}A+\frac{q}{c}\nabla \lambda)^2\psi'=e^{-\frac{iq\lambda}{\hbar c}}(-i\hbar \nabla -\frac{q}{c}A)^2\psi$$. In other words could I simply just say that the operator $$(-i\hbar \nabla -\frac{q}{c}A+\frac{q}{c}\nabla \lambda)$$ acts on $$\psi'$$ twice., or do I need to show that $$(-i\hbar \nabla -\frac{q}{c}A+\frac{q}{c}\nabla \lambda)e^{-\frac{iq\lambda}{\hbar c}}(-i\hbar \nabla -\frac{q}{c}A)\psi=e^{-\frac{iq\lambda}{\hbar c}}(-i\hbar \nabla -\frac{q}{c}A)^2\psi$$?.
 
If you understand why the first equation in your post #4 holds, it should be obvious that also the last equation holds. I am not really sure what you want to shortcut here...
 
  • Like
Likes   Reactions: Diracobama2181 and vanhees71
You don't need to do anything more to "short cut". If the 1st. equation in #4 holds for all (sic) functions ##\psi##, then the 2nd equation follows immediately without any further calculation.
 
  • Like
Likes   Reactions: bhobba
Perhaps it is a silly question. I was just wondering why it held. Thank you.
 
Well, did you go through the logic that leads to the first equation? Can you apply the same reasoning with ##\Phi = (-i\hbar\nabla - q/c A)\Psi## as a the function?
 
  • Like
Likes   Reactions: Diracobama2181
So $$(-i\hbar \nabla -\frac{q}{c}A+\frac{q}{c}\nabla \lambda)\psi'=(-i\hbar \nabla e^{-\frac{iq \lambda}{\hbar c}}\psi -\frac{q}{c}Ae^{-\frac{iq \lambda}{\hbar c}}\psi+\frac{q}{c}\nabla \lambda e^{-\frac{iq \lambda}{\hbar c}}\psi)=(-\frac{q}{c}\nabla\lambda e^{-\frac{iq \lambda}{\hbar c}} \psi-i\hbar \nabla\psi e^{-\frac{iq \lambda}{\hbar c}}-\frac{q}{c}Ae^{-\frac{iq \lambda}{\hbar c}}\psi+\frac{q}{c}\nabla \lambda e^{-\frac{iq \lambda}{\hbar c}}\psi)=e^{-\frac{iq \lambda}{\hbar c}}(-i\hbar \nabla -\frac{q}{c}A)\psi$$.

The issue I am having trouble understanding is why this would imply $$(-i\hbar \nabla -\frac{q}{c}A+\frac{q}{c}\nabla \lambda)^2\psi'=e^{-\frac{iq \lambda}{\hbar c}}(-i\hbar \nabla -\frac{q}{c}A)^2\psi$$. Wouldn't $$(-i\hbar \nabla -\frac{q}{c}A+\frac{q}{c}\nabla \lambda)$$ also act on $$(-i\hbar \nabla -\frac{q}{c}A)$$?
 
  • #10
Wait. Just figured it out. Thank you.
 

Similar threads

  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 8 ·
Replies
8
Views
1K
  • · Replies 17 ·
Replies
17
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 14 ·
Replies
14
Views
3K