Gaussian Distrib: What is Standard Deviation of Mean?

lover-of-light
Messages
1
Reaction score
0
In my course textbook it is written that "approximately 68% of the measurements from a normally distributed set lie within +-1 standard deviation of the mean value".
What do they mean by standard deviation of the mean value? They give a definition for "the mean"(of a set of measurements(data)) right before talking about gaussian distribution.
Also when they say "68% of the measurements" do they use the word "measurement" as in the meaning of data(e.g. length of an object) or set of data(e.g. lenghts of objects)?
 
Physics news on Phys.org
You can think of the standard deviation as "the average distance from the average."
 
lover-of-light said:
In my course textbook it is written that "approximately 68% of the measurements from a normally distributed set lie within +-1 standard deviation of the mean value".
What do they mean by standard deviation of the mean value? They give a definition for "the mean"(of a set of measurements(data)) right before talking about gaussian distribution.
Here they are talking in terms of distance: roughly 68% of the measurements are within a distance of one standard deviation of the mean. If you think of a sketch of a bell curve, then when you locate
the two values \mu - \sigma and \mu + \sigma, you can say that roughly 68% of the values from that distribution is between those two values

Also when they say "68% of the measurements" do they use the word "measurement" as in the meaning of data(e.g. length of an object) or set of data(e.g. lenghts of objects)?

Answered in the first point of this reply.
 
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Thread 'Detail of Diagonalization Lemma'
The following is more or less taken from page 6 of C. Smorynski's "Self-Reference and Modal Logic". (Springer, 1985) (I couldn't get raised brackets to indicate codification (Gödel numbering), so I use a box. The overline is assigning a name. The detail I would like clarification on is in the second step in the last line, where we have an m-overlined, and we substitute the expression for m. Are we saying that the name of a coded term is the same as the coded term? Thanks in advance.
Back
Top